Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Game theory
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Defence science and technology === Game theory has been used extensively to model decision-making scenarios relevant to defence applications.<ref name=":3">{{cite journal |last1=Ho |first1=Edwin |last2=Rajagopalan |first2=Arvind |last3=Skvortsov |first3=Alex |last4=Arulampalam |first4=Sanjeev |last5=Piraveenan |first5=Mahendra |title=Game Theory in Defence Applications: A Review |journal=Sensors |date=28 January 2022 |volume=22 |issue=3 |pages=1032 |doi=10.3390/s22031032 |doi-access=free |pmid=35161778 |pmc=8838118 |arxiv=2111.01876 |bibcode=2022Senso..22.1032H }}</ref> Most studies that has applied game theory in defence settings are concerned with Command and Control Warfare, and can be further classified into studies dealing with (i) Resource Allocation Warfare (ii) Information Warfare (iii) Weapons Control Warfare, and (iv) Adversary Monitoring Warfare.<ref name=":3" /> Many of the problems studied are concerned with sensing and tracking, for example a surface ship trying to track a hostile submarine and the submarine trying to evade being tracked, and the interdependent decision making that takes place with regards to bearing, speed, and the sensor technology activated by both vessels. The tool,<ref name=":4">{{cite conference |last1=Phetmanee |first1=Surasak |last2=Sevegnani |first2=Michele |last3=Andrei |first3=Oana |title=StEVe: A Rational Verification Tool for Stackelberg Security Games |book-title=Integrated Formal Methods: 19th International Conference, IFM 2024 |date=2024 |pages=267–275 |publisher=Springer-Verlag |location=Manchester, United Kingdom |doi=10.1007/978-3-031-76554-4_15 |url=https://doi.org/10.1007/978-3-031-76554-4_15 }}</ref> for example, automates the transformation of public vulnerability data into models, allowing defenders to synthesize optimal defence strategies through Stackelberg equilibrium analysis. This approach enhances cyber resilience by enabling defenders to anticipate and counteract attackers’ best responses, making game theory increasingly relevant in adversarial cybersecurity environments. Ho et al. provide a broad summary of game theory applications in defence, highlighting its advantages and limitations across both physical and cyber domains.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Game theory
(section)
Add topic