Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Distribution (mathematics)
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Convolution of a test function with a distribution==== Convolution with <math>f \in \mathcal{D}(\R^n)</math> defines a linear map: <math display=block>\begin{alignat}{4} C_f : \,& \mathcal{D}(\R^n) && \to \,&& \mathcal{D}(\R^n) \\ & g && \mapsto\,&& f \ast g \\ \end{alignat}</math> which is [[continuous function|continuous]] with respect to the canonical [[LF space]] topology on <math>\mathcal{D}(\R^n).</math> Convolution of <math>f</math> with a distribution <math>T \in \mathcal{D}'(\R^n)</math> can be defined by taking the transpose of <math>C_f</math> relative to the duality pairing of <math>\mathcal{D}(\R^n)</math> with the space <math>\mathcal{D}'(\R^n)</math> of distributions.{{sfn|Trèves|2006|loc=Chapter 27}} If <math>f, g, \phi \in \mathcal{D}(\R^n),</math> then by [[Fubini's theorem]] <math display=block>\langle C_fg, \phi \rangle = \int_{\R^n}\phi(x)\int_{\R^n}f(x-y) g(y) \,dy \,dx = \left\langle g,C_{\tilde{f}}\phi \right\rangle.</math> Extending by continuity, the convolution of <math>f</math> with a distribution <math>T</math> is defined by <math display=block>\langle f \ast T, \phi \rangle = \left\langle T, \tilde{f} \ast \phi \right\rangle, \quad \text{ for all } \phi \in \mathcal{D}(\R^n).</math> An alternative way to define the convolution of a test function <math>f</math> and a distribution <math>T</math> is to use the translation operator <math>\tau_a.</math> The convolution of the compactly supported function <math>f</math> and the distribution <math>T</math> is then the function defined for each <math>x \in \R^n</math> by <math display=block>(f \ast T)(x) = \left\langle T, \tau_x \tilde{f} \right\rangle.</math> It can be shown that the convolution of a smooth, compactly supported function and a distribution is a smooth function. If the distribution <math>T</math> has compact support, and if <math>f</math> is a polynomial (resp. an exponential function, an analytic function, the restriction of an entire analytic function on <math>\Complex^n</math> to <math>\R^n,</math> the restriction of an entire function of exponential type in <math>\Complex^n</math> to <math>\R^n</math>), then the same is true of <math>T \ast f.</math>{{sfn|Trèves|2006|pp=284-297}} If the distribution <math>T</math> has compact support as well, then <math>f\ast T</math> is a compactly supported function, and the [[Titchmarsh convolution theorem]] {{harvtxt|Hörmander|1983|loc=Theorem 4.3.3}} implies that: <math display=block>\operatorname{ch}(\operatorname{supp}(f \ast T)) = \operatorname{ch}(\operatorname{supp}(f)) + \operatorname{ch} (\operatorname{supp}(T))</math> where <math>\operatorname{ch}</math> denotes the [[convex hull]] and <math>\operatorname{supp}</math> denotes the support.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Distribution (mathematics)
(section)
Add topic