Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
N,N-Dimethyltryptamine
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Biosynthesis=== [[Image:DMT biosynthetic pathway.png|class=skin-invert-image|thumb|left|Biosynthetic pathway for ''N'',''N''-dimethyltryptamine]] Dimethyltryptamine is an [[indole alkaloid]] derived from the [[shikimate]] pathway. Its [[biosynthesis]] is relatively simple and summarized in the adjacent picture. In plants, the parent amino acid [[L-tryptophan|{{sc|L}}-tryptophan]] is produced endogenously where in animals {{sc|L}}-tryptophan is an [[essential amino acid]] coming from diet. No matter the source of {{sc|L}}-tryptophan, the biosynthesis begins with its [[decarboxylation]] by an [[aromatic amino acid decarboxylase]] (AADC) [[enzyme]] (step 1). The resulting decarboxylated tryptophan [[Analog (chemistry)|analog]] is [[tryptamine]]. Tryptamine then undergoes a [[transmethylation]] (step 2): the enzyme [[tryptamine-N-methyltransferase|indolethylamine-''N''-methyltransferase]] (INMT) [[Catalysis|catalyzes]] the transfer of a [[methyl group]] from [[Cofactor (biochemistry)|cofactor]] [[S-adenosyl-methionine|''S''-adenosylmethionine]] (SAM), via [[nucleophilic]] attack, to tryptamine. This reaction transforms SAM into [[S-adenosylhomocysteine|''S''-adenosylhomocysteine]] (SAH), and gives the intermediate product [[N-methyltryptamine|''N''-methyltryptamine]] (NMT).<ref name="pmid13685339">{{cite journal | vauthors = Axelrod J | title = Enzymatic formation of psychotomimetic metabolites from normally occurring compounds | journal = Science | volume = 134 | issue = 3475 | page = 343 | date = August 1961 | pmid = 13685339 | doi = 10.1126/science.134.3475.343 | bibcode = 1961Sci...134..343A | s2cid = 39122485 }}</ref><ref name="pmid779022">{{cite journal | vauthors = Rosengarten H, Friedhoff AJ | title = A review of recent studies of the biosynthesis and excretion of hallucinogens formed by methylation of neurotransmitters or related substances | journal = Schizophrenia Bulletin | volume = 2 | issue = 1 | pages = 90β105 | year = 1976 | pmid = 779022 | doi = 10.1093/schbul/2.1.90 | doi-access = free }}</ref> NMT is in turn transmethylated by the same process (step 3) to form the end product ''N'',''N''-dimethyltryptamine. Tryptamine transmethylation is regulated by two products of the reaction: SAH,<ref name="pmid6792104">{{Cite book | vauthors = Barker SA, Monti JA, Christian ST |title=International Review of Neurobiology Volume 22 |chapter=N,N-Dimethyltryptamine: An Endogenous Hallucinogen |volume=22 |pages=83β110 |year=1981 |pmid=6792104 |doi=10.1016/S0074-7742(08)60291-3 |isbn=978-0-12-366822-6}}</ref><ref name="pmid4756800">{{cite journal | vauthors = Lin RL, Narasimhachari N, Himwich HE | title = Inhibition of indolethylamine-''N''-methyltransferase by ''S''-adenosylhomocysteine | journal = Biochemical and Biophysical Research Communications | volume = 54 | issue = 2 | pages = 751β759 | date = September 1973 | pmid = 4756800 | doi = 10.1016/0006-291X(73)91487-3 }}</ref><ref name="pmid9852119">{{cite journal | vauthors = Thompson MA, Weinshilboum RM | title = Rabbit lung indolethylamine ''N''-methyltransferase. cDNA and gene cloning and characterization | journal = The Journal of Biological Chemistry | volume = 273 | issue = 51 | pages = 34502β34510 | date = December 1998 | pmid = 9852119 | doi = 10.1074/jbc.273.51.34502 | doi-access = free }}</ref> and DMT<ref name="pmid6792104" /><ref name="pmid9852119" /> were shown ''ex vivo'' to be among the most potent inhibitors of rabbit INMT activity. This transmethylation mechanism has been repeatedly and consistently proven by [[Isotope labeling|radiolabeling]] of SAM methyl group with [[carbon-14]] ((<sup>14</sup>C-CH<sub>3</sub>)SAM).<ref name="pmid13685339" /><ref name="pmid6792104" /><ref name="pmid9852119" /><ref name="pmid14361">{{cite journal | vauthors = Mandel LR, Prasad R, Lopez-Ramos B, Walker RW | title = The biosynthesis of dimethyltryptamine in vivo | journal = Research Communications in Chemical Pathology and Pharmacology | volume = 16 | issue = 1 | pages = 47β58 | date = January 1977 | pmid = 14361 }}</ref><ref name="pmid10552930">{{cite journal | vauthors = Thompson MA, Moon E, Kim UJ, Xu J, Siciliano MJ, Weinshilboum RM | title = Human indolethylamine ''N''-methyltransferase: cDNA cloning and expression, gene cloning, and chromosomal localization | journal = Genomics | volume = 61 | issue = 3 | pages = 285β297 | date = November 1999 | pmid = 10552930 | doi = 10.1006/geno.1999.5960 | url = http://crfdl.org:1111/xmlui/bitstream/handle/123456789/307/Thompson99humanINMT.pdf?sequence=1 | format = PDF }}{{dead link|date=March 2018 |bot=InternetArchiveBot |fix-attempted=yes }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
N,N-Dimethyltryptamine
(section)
Add topic