Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Mathematics
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Cultural impact == === Artistic expression === {{Main|Mathematics and art}} Notes that sound well together to a Western ear are sounds whose fundamental [[frequencies]] of vibration are in simple ratios. For example, an octave doubles the frequency and a [[perfect fifth]] multiplies it by <math>\frac{3}{2}</math>.<ref>{{cite journal | last = Cazden | first = Norman | date = October 1959 | doi = 10.1177/002242945900700205 | issue = 2 | journal = Journal of Research in Music Education | jstor = 3344215 | pages = 197–220 | title = Musical intervals and simple number ratios | volume = 7| s2cid = 220636812 }}</ref><ref>{{cite journal | last = Budden | first = F. J. | date = October 1967 | doi = 10.2307/3613237 | issue = 377 | journal = The Mathematical Gazette | jstor = 3613237 | pages = 204–215 | publisher = Cambridge University Press ({CUP}) | title = Modern mathematics and music | volume = 51| s2cid = 126119711 }}</ref> [[File:Julia set (highres 01).jpg|thumb|[[Fractal]] with a scaling symmetry and a central symmetry]] Humans, as well as some other animals, find symmetric patterns to be more beautiful.<ref>{{Cite journal |last1=Enquist |first1=Magnus |last2=Arak |first2=Anthony |date=November 1994 |title=Symmetry, beauty and evolution |url=https://www.nature.com/articles/372169a0 |journal=Nature |language=en |volume=372 |issue=6502 |pages=169–172 |doi=10.1038/372169a0 |pmid=7969448 |bibcode=1994Natur.372..169E |s2cid=4310147 |issn=1476-4687 |access-date=December 29, 2022 |archive-date=December 28, 2022 |archive-url=https://web.archive.org/web/20221228052049/https://www.nature.com/articles/372169a0 |url-status=live }}</ref> Mathematically, the symmetries of an object form a group known as the [[symmetry group]].<ref>{{Cite web |last=Hestenes |first=David |year=1999 |title=Symmetry Groups |url=https://davidhestenes.net/geocalc/pdf/SymmetryGroups.pdf }}</ref> For example, the group underlying mirror symmetry is the [[cyclic group]] of two elements, <math>\mathbb{Z}/2\mathbb{Z}</math>. A [[Rorschach test]] is a figure invariant by this symmetry,<ref>{{cite encyclopedia | last = Bender | first = Sara | editor1-last = Carducci | editor1-first = Bernardo J. | editor2-last = Nave | editor2-first = Christopher S. | editor3-last = Mio | editor3-first = Jeffrey S. | editor4-last = Riggio | editor4-first = Ronald E. | title = The Rorschach Test | date = September 2020 | doi = 10.1002/9781119547167.ch131 | pages = 367–376 | publisher = Wiley | encyclopedia = The Wiley Encyclopedia of Personality and Individual Differences: Measurement and Assessment| isbn = 978-1-119-05751-2 }}</ref> as are [[butterfly]] and animal bodies more generally (at least on the surface).<ref>{{cite book|title=Symmetry|volume=47|series=Princeton Science Library|first=Hermann|last=Weyl|author-link=Hermann Weyl|publisher=Princeton University Press|year=2015|isbn=978-1-4008-7434-7|page=[https://books.google.com/books?hl=en&lr=&id=GG1FCQAAQBAJ&pg=PA4 4]}}</ref> Waves on the sea surface possess translation symmetry: moving one's viewpoint by the distance between wave crests does not change one's view of the sea.<ref>{{Cite web|url=https://ocw.mit.edu/courses/8-03sc-physics-iii-vibrations-and-waves-fall-2016/pages/part-i-mechanical-vibrations-and-waves/lecture-8/|title=Lecture 8: Translation Symmetry | Physics III: Vibrations and Waves | Physics|website=MIT OpenCourseWare}}</ref> [[Fractals]] possess [[self-similarity]].<ref>{{Cite web |last=Bradley |first=Larry |year=2010 |title=Fractals – Chaos & Fractals |url=https://www.stsci.edu/~lbradley/seminar/fractals.html |access-date=December 29, 2022 |website=stsci.edu |archive-date=March 7, 2023 |archive-url=https://web.archive.org/web/20230307054609/https://www.stsci.edu/~lbradley/seminar/fractals.html |url-status=live }}</ref><ref>{{Cite web |title=Self-similarity |url=https://math.bu.edu/DYSYS/chaos-game/node5.html |access-date=December 29, 2022 |website=math.bu.edu |archive-date=March 2, 2023 |archive-url=https://web.archive.org/web/20230302132911/http://math.bu.edu/DYSYS/chaos-game/node5.html |url-status=live }}</ref> === Popularization === {{Main|Popular mathematics}}Popular mathematics is the act of presenting mathematics without technical terms.<ref>{{Cite conference |last=Kissane |first=Barry |date=July 2009 |title=Popular mathematics |url=https://researchrepository.murdoch.edu.au/id/eprint/6242/ |conference=22nd Biennial Conference of The Australian Association of Mathematics Teachers |location=Fremantle, Western Australia |publisher=Australian Association of Mathematics Teachers |pages=125–126 |access-date=December 29, 2022 |archive-date=March 7, 2023 |archive-url=https://web.archive.org/web/20230307054610/https://researchrepository.murdoch.edu.au/id/eprint/6242/ |url-status=live }}</ref> Presenting mathematics may be hard since the general public suffers from [[mathematical anxiety]] and mathematical objects are highly abstract.<ref>{{Cite book |last=Steen |first=L. A. |url={{GBurl|id=-d3TBwAAQBAJ|dq="popular mathematics" analogies|p=2}} |title=Mathematics Today Twelve Informal Essays |date=2012|publisher=Springer Science & Business Media |isbn=978-1-4613-9435-8 |page=2 |language=en |access-date=January 3, 2023 }}</ref> However, popular mathematics writing can overcome this by using applications or cultural links.<ref>{{Cite book |last=Pitici |first=Mircea |url={{GBurl|id=9nGQDQAAQBAJ|dq="popular mathematics" analogies|p=331}} |title=The Best Writing on Mathematics 2016 |date=2017|publisher=Princeton University Press |isbn=978-1-4008-8560-2 |language=en |access-date=January 3, 2023 }}</ref> Despite this, mathematics is rarely the topic of popularization in printed or televised media. === Awards and prize problems === {{Main category|Mathematics awards}} [[File:FieldsMedalFront.jpg|thumb|The front side of the [[Fields Medal]] with an illustration of the Greek [[polymath]] [[Archimedes]]]] The most prestigious award in mathematics is the [[Fields Medal]],{{sfn|Monastyrsky|2001|p=1|ps=: "The Fields Medal is now indisputably the best known and most influential award in mathematics."}}{{sfn|Riehm|2002|pp=778–782}} established in 1936 and awarded every four years (except around [[World War II in Yugoslavia|World War II]]) to up to four individuals.<ref>{{Cite web |title=Fields Medal {{!}} International Mathematical Union (IMU) |url=https://www.mathunion.org/imu-awards/fields-medal |access-date=February 21, 2022 |website=www.mathunion.org |archive-date=December 26, 2018 |archive-url=https://web.archive.org/web/20181226015744/https://www.mathunion.org/imu-awards/fields-medal |url-status=live }}</ref><ref name="StAndrews-Fields">{{Cite web |title=Fields Medal |url=https://mathshistory.st-andrews.ac.uk/Honours/FieldsMedal/ |access-date=February 21, 2022 |website=Maths History |language=en |archive-date=March 22, 2019 |archive-url=https://web.archive.org/web/20190322134417/http://www-history.mcs.st-andrews.ac.uk/Honours/FieldsMedal.html |url-status=live }}</ref> It is considered the mathematical equivalent of the [[Nobel Prize]].<ref name="StAndrews-Fields" /> Other prestigious mathematics awards include:<ref>{{cite web | title=Honours/Prizes Index | website=MacTutor History of Mathematics Archive | url=https://mathshistory.st-andrews.ac.uk/Honours/ | access-date=February 20, 2023 | archive-date=December 17, 2021 | archive-url=https://web.archive.org/web/20211217235828/https://mathshistory.st-andrews.ac.uk/Honours/ | url-status=live }}</ref> * The [[Abel Prize]], instituted in 2002<ref>{{Cite web|title=About the Abel Prize|publisher=The Abel Prize|url=https://abelprize.no/page/about-abel-prize|access-date=January 23, 2022|archive-date=April 14, 2022|archive-url=https://web.archive.org/web/20220414060442/https://abelprize.no/page/about-abel-prize|url-status=live}}</ref> and first awarded in 2003<ref>{{Cite encyclopedia|title=Abel Prize {{!}} mathematics award|encyclopedia=Encyclopedia Britannica|url=https://www.britannica.com/science/Abel-Prize|access-date=January 23, 2022|language=en|archive-date=January 26, 2020|archive-url=https://web.archive.org/web/20200126120202/https://www.britannica.com/science/Abel-Prize|url-status=live}}</ref> * The [[Chern Medal]] for lifetime achievement, introduced in 2009<ref>{{Cite web |date=June 1, 2009 |title=Chern Medal Award|url=https://www.mathunion.org/fileadmin/IMU/Prizes/Chern/Chern_MedalPress_Release_090601.pdf |url-status=live |archive-url=https://web.archive.org/web/20090617012953/https://www.mathunion.org/fileadmin/IMU/Prizes/Chern/Chern_MedalPress_Release_090601.pdf |archive-date=June 17, 2009 |access-date=February 21, 2022 |website=mathunion.org}}</ref> and first awarded in 2010<ref>{{Cite web |title=Chern Medal Award|publisher=International Mathematical Union (IMU)|url=https://www.mathunion.org/imu-awards/chern-medal-award |access-date=January 23, 2022|archive-date=August 25, 2010 |archive-url=https://web.archive.org/web/20100825071850/http://www.mathunion.org/general/prizes/chern/details |url-status=live }}</ref> * The [[American Mathematical Society|AMS]] [[Leroy P. Steele Prize]], awarded since 1970<ref>{{cite web | title=The Leroy P Steele Prize of the AMS | publisher=School of Mathematics and Statistics, University of St Andrews, Scotland | url=https://mathshistory.st-andrews.ac.uk/Honours/AMSSteelePrize/ | access-date=November 17, 2022 | archive-date=November 17, 2022 | archive-url=https://web.archive.org/web/20221117201134/https://mathshistory.st-andrews.ac.uk/Honours/AMSSteelePrize/ | url-status=live }}</ref> * The [[Wolf Prize in Mathematics]], also for lifetime achievement,<ref>{{Cite book |last1=Chern |first1=S. S. |last2=Hirzebruch |first2=F. |date=September 2000 |title=Wolf Prize in Mathematics |url=https://www.worldscientific.com/worldscibooks/10.1142/4149 |language=en |doi=10.1142/4149 |isbn=978-981-02-3945-9 |access-date=February 21, 2022 |archive-date=February 21, 2022 |archive-url=https://web.archive.org/web/20220221171351/https://www.worldscientific.com/worldscibooks/10.1142/4149 |url-status=live }}</ref> instituted in 1978<ref>{{Cite web|title=The Wolf Prize|url=https://wolffund.org.il/the-wolf-prize/|url-status=live|archive-url=https://web.archive.org/web/20200112205029/https://wolffund.org.il/the-wolf-prize/|archive-date=January 12, 2020|access-date=January 23, 2022|website=Wolf Foundation|language=en-US}}</ref> A famous list of 23 [[open problem]]s, called "[[Hilbert's problems]]", was compiled in 1900 by German mathematician David Hilbert.<ref name=":0">{{Cite web|date=May 6, 2020|title=Hilbert's Problems: 23 and Math|url=https://www.simonsfoundation.org/2020/05/06/hilberts-problems-23-and-math/|access-date=January 23, 2022|website=Simons Foundation|language=en-US|archive-date=January 23, 2022|archive-url=https://web.archive.org/web/20220123011430/https://www.simonsfoundation.org/2020/05/06/hilberts-problems-23-and-math/|url-status=live}}</ref> This list has achieved great celebrity among mathematicians,<ref>{{cite book | chapter=Deciding the undecidable: Wrestling with Hilbert's problems | first=Solomon | last=Feferman | author-link=Solomon Feferman | title=In the Light of Logic | year=1998 | publisher=Oxford University Press | isbn=978-0-19-508030-8 | pages=3–27 | series=Logic and Computation in Philosophy series | chapter-url=https://math.stanford.edu/~feferman/papers/deciding.pdf | url={{GBurl|id=1rjnCwAAQBAJ}} | access-date=November 29, 2022 }}</ref> and at least thirteen of the problems (depending how some are interpreted) have been solved.<ref name=":0" /><!-- Namely: problems 1, 3, 4; 5, 7, 10; 13, 14, 17; 18, 19, 20; 21 have been solved. (The semicolons are to make counting easier). ~Duckmather --> A new list of seven important problems, titled the "[[Millennium Prize Problems]]", was published in 2000. Only one of them, the [[Riemann hypothesis]], duplicates one of Hilbert's problems. A solution to any of these problems carries a 1 million dollar reward.<ref>{{Cite web|title=The Millennium Prize Problems|publisher=Clay Mathematics Institute|url=http://www.claymath.org/millennium-problems/millennium-prize-problems|access-date=January 23, 2022|archive-date=July 3, 2015|archive-url=https://web.archive.org/web/20150703184941/http://www.claymath.org/millennium-problems/millennium-prize-problems|url-status=live}}</ref> To date, only one of these problems, the [[Poincaré conjecture]], has been solved by the Russian mathematician [[Grigori Perelman]].<ref>{{Cite web|title=Millennium Problems|publisher=Clay Mathematics Institute|url=http://www.claymath.org/millennium-problems|access-date=January 23, 2022|archive-date=December 20, 2018|archive-url=https://web.archive.org/web/20181220122925/http://www.claymath.org/millennium-problems|url-status=live}}</ref><!-- NOTE that this website describes the answer to each problem as "unknown" EXCEPT for the Poincaré conjecture, where it mentions "Perelman's proof". ~Duckmather -->
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Mathematics
(section)
Add topic