Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
General relativity
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Global and quasi-local quantities === {{Main|Mass in general relativity}} The notion of evolution equations is intimately tied in with another aspect of general relativistic physics. In Einstein's theory, it turns out to be impossible to find a general definition for a seemingly simple property such as a system's total mass (or energy). The main reason is that the gravitational field—like any physical field—must be ascribed a certain energy, but that it proves to be fundamentally impossible to localize that energy.<ref>{{Harvnb|Misner|Thorne|Wheeler|1973|loc=§ 20.4}}</ref> Nevertheless, there are possibilities to define a system's total mass, either using a hypothetical "infinitely distant observer" ([[ADM mass]])<ref>{{Harvnb|Arnowitt|Deser|Misner|1962}}</ref> or suitable symmetries ([[Komar mass]]).<ref>{{Harvnb|Komar|1959}}; for a pedagogical introduction, see {{Harvnb|Wald|1984|loc=sec. 11.2}}; although defined in a totally different way, it can be shown to be equivalent to the ADM mass for stationary spacetimes, cf. {{Harvnb|Ashtekar|Magnon-Ashtekar|1979}}</ref> If one excludes from the system's total mass the energy being carried away to infinity by gravitational waves, the result is the [[Mass in general relativity#ADM and Bondi masses in asymptotically flat space-times|Bondi mass]] at null infinity.<ref>For a pedagogical introduction, see {{Harvnb|Wald|1984|loc=sec. 11.2}}</ref> Just as in [[Physics in the Classical Limit|classical physics]], it can be shown that these masses are positive.<ref>{{Harvnb|Wald|1984|p=295 and refs therein}}; this is important for questions of stability—if there were [[negative mass]] states, then flat, empty Minkowski space, which has mass zero, could evolve into these states</ref> Corresponding global definitions exist for momentum and angular momentum.<ref>{{Harvnb|Townsend|1997|loc=ch. 5}}</ref> There have also been a number of attempts to define ''quasi-local'' quantities, such as the mass of an isolated system formulated using only quantities defined within a finite region of space containing that system. The hope is to obtain a quantity useful for general statements about [[isolated system]]s, such as a more precise formulation of the hoop conjecture.<ref>Such quasi-local mass–energy definitions are the [[Hawking energy]], [[Geroch energy]], or Penrose's quasi-local energy–momentum based on [[Twistor theory|twistor]] methods; cf. the review article {{Harvnb|Szabados|2004}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
General relativity
(section)
Add topic