Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Propositional calculus
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Semantic proof via truth tables == {{See also|Truth table}} Taking advantage of the semantic concept of validity (truth in every interpretation), it is possible to prove a formula's validity by using a [[truth table]], which gives every possible interpretation (assignment of truth values to variables) of a formula.<ref name=":27" /><ref name=":8" /><ref name="BostockIntermediate" /> If, and only if, all the lines of a truth table come out true, the formula is semantically valid (true in every interpretation).<ref name=":27" /><ref name=":8" /> Further, if (and only if) <math>\neg\varphi</math> is valid, then <math>\varphi</math> is inconsistent.<ref name=":30"/><ref name=":31"/><ref name=":32"/> For instance, this table shows that "{{math|''p'' β (''q'' β¨ ''r'' β (''r'' β Β¬''p''))}}" is not valid:<ref name=":8" /> {| class="wikitable" style="margin:1em auto; text-align:center;" |- ! ''p'' ! ''q'' ! ''r'' ! {{math|''q'' β¨ ''r''}} ! {{math|''r'' β Β¬''p''}} ! {{math|''q'' β¨ ''r'' β (''r'' β Β¬''p'')}} ! {{math|''p'' β (''q'' β¨ ''r'' β (''r'' β Β¬''p''))}} |- | {{Success|}}T || {{Success|}}T || {{Success|}}T || {{Success|}}T || {{Failure|}}F || {{Failure|}}F || {{Failure|}}F |- | {{Success|}}T || {{Success|}}T || {{Failure|}}F || {{Success|}}T || {{Success|}}T || {{Success|}}T || {{Success|}}T |- | {{Success|}}T || {{Failure|}}F || {{Success|}}T || {{Success|}}T || {{Failure|}}F || {{Failure|}}F || {{Failure|}}F |- | {{Success|}}T || {{Failure|}}F || {{Failure|}}F || {{Failure|}}F || {{Success|}}T || {{Success|}}T || {{Success|}}T |- | {{Failure|}}F || {{Success|}}T || {{Success|}}T || {{Success|}}T || {{Success|}}T || {{Success|}}T || {{Success|}}T |- | {{Failure|}}F || {{Success|}}T || {{Failure|}}F || {{Success|}}T || {{Success|}}T || {{Success|}}T || {{Success|}}T |- | {{Failure|}}F || {{Failure|}}F || {{Success|}}T || {{Success|}}T || {{Success|}}T || {{Success|}}T || {{Success|}}T |- | {{Failure|}}F || {{Failure|}}F || {{Failure|}}F || {{Failure|}}F || {{Success|}}T || {{Success|}}T || {{Success|}}T |} The computation of the last column of the third line may be displayed as follows:<ref name=":8" /> {| class="wikitable" style="margin:1em auto; text-align:center;" |- ! p ! β ! (q ! β¨ ! r ! β ! (r ! β ! Β¬ ! p)) |- | T | β | (F | β¨ | T | β | (T | β | Β¬ | T)) |- | T | β | ( | T | | β | (T | β | F | )) |- | T | β | ( | T | | β | | F | | ) |- | T | β | | | | F | | | | |- | | F | | | | | | | | |- | T | F | F | T | T | F | T | F | F | T |} Further, using the theorem that <math>\varphi \models \psi</math> if, and only if, <math>(\varphi \to \psi)</math> is valid,<ref name="metalogic" /><ref name=":20" /> we can use a truth table to prove that a formula is a semantic consequence of a set of formulas: <math>\{\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n\} \models \psi</math> if, and only if, we can produce a truth table that comes out all true for the formula <math>\left( \left(\bigwedge _{i=1}^n \varphi_i \right) \rightarrow \psi \right)</math> (that is, if <math>\models \left( \left(\bigwedge _{i=1}^n \varphi_i \right) \rightarrow \psi \right)</math>).<ref name="ms60"/><ref name="ms61"/>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Propositional calculus
(section)
Add topic