Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Power law
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Log-log plots ==== [[File:Log-log plot example.svg|thumb|A straight line on a log–log plot is necessary but insufficient evidence for power-laws, the slope of the straight line corresponds to the power law exponent.]] [[Log–log plot]]s are an alternative way of graphically examining the tail of a distribution using a random sample. Taking the logarithm of a power law of the form <math>f(x) = ax^{k}</math> results in:<ref>http://www.physics.pomona.edu/sixideas/old/labs/LRM/LR05.pdf</ref> :<math>\begin{align} \log(f(x)) &= \log(ax^{k}) \\ &= \log(a) + \log(x^k) \\ &= \log(a) + k \cdot \log(x), \end{align}</math> which forms a straight line with slope <math>k</math> on a log-log scale. Caution has to be exercised however as a log–log plot is necessary but insufficient evidence for a power law relationship, as many non power-law distributions will appear as straight lines on a log–log plot.{{sfn|Clauset|Shalizi|Newman|2009}}<ref>{{cite web|url=http://bactra.org/weblog/491.html|title=So You Think You Have a Power Law — Well Isn't That Special?|website=bactra.org|access-date=27 March 2018}}</ref> This method consists of plotting the logarithm of an estimator of the probability that a particular number of the distribution occurs versus the logarithm of that particular number. Usually, this estimator is the proportion of times that the number occurs in the data set. If the points in the plot tend to converge to a straight line for large numbers in the x axis, then the researcher concludes that the distribution has a power-law tail. Examples of the application of these types of plot have been published.<ref>{{cite journal |last1=Jeong |first1=H. |last2=Tombor |first2= B. Albert |last3=Oltvai |first3=Z.N. |last4=Barabasi |first4= A.-L. |year=2000 |title=The large-scale organization of metabolic networks |journal=Nature |volume=407 |issue=6804| pages=651–654 |doi=10.1038/35036627 |pmid=11034217 |arxiv=cond-mat/0010278 |bibcode=2000Natur.407..651J |s2cid=4426931}}</ref> A disadvantage of these plots is that, in order for them to provide reliable results, they require huge amounts of data. In addition, they are appropriate only for discrete (or grouped) data.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Power law
(section)
Add topic