Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Navier–Stokes equations
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Spherical coordinates=== In [[spherical coordinates]], the <math display="inline">r</math>, <math display="inline">\phi</math>, and <math display="inline">\theta</math> momentum equations are<ref name="Ach"/> (note the convention used: <math display="inline">\theta</math> is polar angle, or [[colatitude]],<ref>{{Citation | url = http://mathworld.wolfram.com/SphericalCoordinates.html | title = Spherical Coordinates | author = Eric W. Weisstein | publisher = [[MathWorld]] | date = 2005-10-26 | access-date = 2008-01-22 | author-link = Eric W. Weisstein }}</ref> <math display="inline">0 \leq \theta \leq \pi</math>): <math display="block">\begin{align} r:\ &\rho \left({\partial_t u_r} + u_r {\partial_r u_r} + \frac{u_\varphi}{r \sin\theta} {\partial_\varphi u_r} + \frac{u_\theta}{r} {\partial_\theta u_r} - \frac{u_\varphi^2 + u_\theta^2}{r}\right) \\ &\quad = -{\partial_r p} \\ &\qquad + \mu \left(\frac{1}{r^2} \partial_r \left(r^2 {\partial_r u_r}\right) + \frac{1}{r^2 \sin^2\theta} {\partial_\varphi^2 u_r} + \frac{1}{r^2 \sin\theta} \partial_\theta \left(\sin\theta {\partial_\theta u_r}\right) - 2\frac{u_r + {\partial_\theta u_\theta} + u_\theta \cot\theta}{r^2} - \frac{2}{r^2 \sin\theta} {\partial_\varphi u_\varphi} \right) \\ &\qquad + \frac{1}{3}\mu \partial_r \left( \frac{1}{r^2} \partial_r\left(r^2 u_r\right) + \frac{1}{r \sin\theta} \partial_\theta \left( u_\theta\sin\theta \right) + \frac{1}{r\sin\theta} {\partial_\varphi u_\varphi} \right) \\ &\qquad + \rho g_r \\[8px] \end{align}</math> <math display="block">\begin{align} \varphi:\ &\rho \left({\partial_t u_\varphi} + u_r {\partial_r u_\varphi} + \frac{u_\varphi}{r \sin\theta} {\partial_\varphi u_\varphi} + \frac{u_\theta}{r} {\partial_\theta u_\varphi} + \frac{u_r u_\varphi + u_\varphi u_\theta \cot\theta}{r}\right) \\ &\quad = -\frac{1}{r \sin\theta} {\partial_\varphi p} \\ &\qquad + \mu \left(\frac{1}{r^2} \partial_r \left(r^2 {\partial_r u_\varphi}\right) + \frac{1}{r^2 \sin^2\theta} {\partial_\varphi^2 u_\varphi} + \frac{1}{r^2 \sin\theta} \partial_\theta \left(\sin\theta {\partial_\theta u_\varphi}\right) + \frac{2 \sin\theta {\partial_\varphi u_r} + 2 \cos\theta {\partial_\varphi u_\theta} - u_\varphi}{r^2 \sin^2\theta} \right) \\ &\qquad + \frac{1}{3}\mu\frac{1}{r \sin\theta} \partial_\varphi \left( \frac{1}{r^2} \partial_r \left(r^2 u_r\right) + \frac{1}{r \sin\theta} \partial_\theta \left( u_\theta\sin\theta \right) + \frac{1}{r\sin\theta} {\partial_\varphi u_\varphi} \right) \\ &\qquad + \rho g_\varphi \\[8px] \end{align}</math> <math display="block">\begin{align} \theta:\ &\rho \left({\partial_t u_\theta} + u_r {\partial_r u_\theta} + \frac{u_\varphi}{r \sin\theta} {\partial_\varphi u_\theta} + \frac{u_\theta}{r} {\partial_\theta u_\theta} + \frac{u_r u_\theta - u_\varphi^2 \cot\theta}{r}\right) \\ &\quad = -\frac{1}{r} {\partial_\theta p} \\ &\qquad + \mu \left(\frac{1}{r^2} \partial_r \left(r^2 {\partial_r u_\theta}\right) + \frac{1}{r^2 \sin^2\theta} {\partial_\varphi^2 u_\theta} + \frac{1}{r^2 \sin\theta} \partial_\theta \left(\sin\theta {\partial_\theta u_\theta}\right) + \frac{2}{r^2} {\partial_\theta u_r} - \frac{u_\theta + 2 \cos\theta {\partial_\varphi u_\varphi}}{r^2 \sin^2\theta} \right) \\ &\qquad + \frac{1}{3}\mu\frac{1}{r} \partial_\theta \left( \frac{1}{r^2} \partial_r \left(r^2 u_r\right) + \frac{1}{r \sin\theta} \partial_\theta \left( u_\theta\sin\theta \right) + \frac{1}{r\sin\theta} {\partial_\varphi u_\varphi} \right) \\ &\qquad + \rho g_\theta. \end{align}</math> Mass continuity will read: <math display="block">{\partial_t \rho} + \frac{1}{r^2} \partial_r \left(\rho r^2 u_r\right) + \frac{1}{r \sin\theta}{\partial_\varphi (\rho u_\varphi)} + \frac{1}{r \sin\theta} \partial_\theta \left(\sin\theta \rho u_\theta\right) = 0.</math> These equations could be (slightly) compacted by, for example, factoring <math display="inline">\frac{1}{r^2}</math> from the viscous terms. However, doing so would undesirably alter the structure of the Laplacian and other quantities.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Navier–Stokes equations
(section)
Add topic