Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
General relativity
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Evolution equations === {{Main|Initial value formulation (general relativity)}} Each solution of Einstein's equation encompasses the whole history of a universe—it is not just some snapshot of how things are, but a whole, possibly matter-filled, spacetime. It describes the state of matter and geometry everywhere and at every moment in that particular universe. Due to its general covariance, Einstein's theory is not sufficient by itself to determine the [[time evolution]] of the metric tensor. It must be combined with a [[coordinate condition]], which is analogous to [[gauge fixing]] in other field theories.<ref>{{Harvnb|Hawking|Ellis|1973|loc=sec. 7.1}}</ref> To understand Einstein's equations as partial differential equations, it is helpful to formulate them in a way that describes the evolution of the universe over time. This is done in "3+1" formulations, where spacetime is split into three space dimensions and one time dimension. The best-known example is the [[ADM formalism]].<ref>{{Harvnb|Arnowitt|Deser|Misner|1962}}; for a pedagogical introduction, see {{Harvnb|Misner|Thorne|Wheeler|1973|loc=§ 21.4–§ 21.7}}</ref> These decompositions show that the spacetime evolution equations of general relativity are well-behaved: solutions always [[existence theorem|exist]], and are uniquely defined, once suitable initial conditions have been specified.<ref>{{Harvnb|Fourès-Bruhat|1952}} and {{Harvnb|Bruhat|1962}}; for a pedagogical introduction, see {{Harvnb|Wald|1984|loc=ch. 10}}; an online review can be found in {{Harvnb|Reula|1998}}</ref> Such formulations of Einstein's field equations are the basis of numerical relativity.<ref>{{Harvnb|Gourgoulhon|2007}}; for a review of the basics of numerical relativity, including the problems arising from the peculiarities of Einstein's equations, see {{Harvnb|Lehner|2001}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
General relativity
(section)
Add topic