Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Unbinilium
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Synthesis attempts=== {{main|Isotopes of unbinilium}} ====Past==== Following their success in obtaining [[oganesson]] by the reaction between [[californium-249|<sup>249</sup>Cf]] and <sup>48</sup>Ca in 2006, the team at the [[Joint Institute for Nuclear Research]] (JINR) in [[Dubna]] started experiments in March–April 2007 to attempt to create unbinilium with a [[iron-58|<sup>58</sup>Fe]] beam and a [[plutonium-244|<sup>244</sup>Pu]] target.<ref>{{cite news |url=https://www.llnl.gov/str/April07/pdfs/04_07.4.pdf|title=A New Block on the Periodic Table |date=April 2007|publisher=Lawrence Livermore National Laboratory|access-date=2008-01-18}}</ref><ref>{{cite web |url=http://wwwinfo.jinr.ru/plan/ptp-2007/e751004.htm |title=Synthesis of New Nuclei and Study of Nuclear Properties and Heavy-Ion Reaction Mechanisms |last1=Itkis |first1=M. G. |last2=Oganessian |first2=Yu. Ts. |date=2007 |website=jinr.ru |publisher=Joint Institute for Nuclear Research |access-date=23 September 2016}}</ref> The attempt was unsuccessful,<ref name="Oganessian120">{{cite journal|journal=Phys. Rev. C|volume=79|issue=2|at=024603|date=2009 |title=Attempt to produce element 120 in the <sup>244</sup>Pu+<sup>58</sup>Fe reaction|doi=10.1103/PhysRevC.79.024603 |last1=Oganessian|first1=Yu. Ts.|last2=Utyonkov|first2=V.|last3=Lobanov|first3=Yu. |display-authors=etal |bibcode=2009PhRvC..79b4603O}}</ref> and the Russian team planned to upgrade their facilities before attempting the reaction again.<ref name="Oganessian120" /> :{{nuclide|Pu|244}} + {{nuclide|Fe|58}} → {{nuclide|Ubn|302}}* → no atoms In April 2007, the team at the [[GSI Helmholtz Centre for Heavy Ion Research]] in [[Darmstadt]], Germany attempted to create unbinilium using a <sup>238</sup>[[uranium|U]] target and a <sup>64</sup>[[nickel|Ni]] beam:<ref name="GSI08" /> :{{nuclide|U|238}} + {{nuclide|Ni|64}} → {{nuclide|Ubn|302}}* → no atoms No atoms were detected. The GSI repeated the experiment with higher sensitivity in three separate runs in April–May 2007, January–March 2008, and September–October 2008, all with negative results, reaching a cross section limit of 90 fb.<ref name="GSI08">{{cite report|last=Hoffman|first=S.|display-authors=etal|title=Probing shell effects at ''Z'' = 120 and ''N'' = 184|date=2008|publisher=GSI Scientific Report|page=131}}</ref> In 2011, after upgrading their equipment to allow the use of more radioactive targets, scientists at the GSI attempted the rather asymmetrical fusion reaction:<ref name="Duellmann" /> :{{nuclide|Cm|248}} + {{nuclide|Cr|54}} → {{nuclide|Ubn|302}}* → no atoms It was expected that the change in reaction would quintuple the probability of synthesizing unbinilium,<ref>{{cite web |title=Searching for the island of stability |author=GSI |website=www.gsi.de |date=5 April 2012 |publisher=GSI |url=https://www.gsi.de/de/work/forschung/nustarenna/nustarenna_divisions/she_physik/research/super_heavy_elements/future_projects.htm |access-date=23 September 2016}}</ref> as the yield of such reactions is strongly dependent on their asymmetry.{{sfn|Zagrebaev|Karpov|Greiner|2013}} Although this reaction is less asymmetric than the <sup>249</sup>Cf+<sup>50</sup>Ti reaction, it also creates more neutron-rich unbinilium isotopes that should receive increased stability from their proximity to the shell closure at ''N'' = 184.<ref name="Hofmann2016" /> Three signals were observed in May 2011; a possible assignment to <sup>299</sup>Ubn and its daughters was considered,<ref name="EXON">{{cite conference |title=Remarks on the Fission Barriers of SHN and Search for Element 120 |display-authors=3 |first1=S. |last1=Hofmann |first2=S. |last2=Heinz |first3=R. |last3=Mann |first4=J. |last4=Maurer |first5=G. |last5=Münzenberg |first6=S. |last6=Antalic |first7=W. |last7=Barth |first8=H. G. |last8=Burkhard |first9=L. |last9=Dahl |first10=K. |last10=Eberhardt |first11=R. |last11=Grzywacz |first12=J. H. |last12=Hamilton |first13=R. A. |last13=Henderson |first14=J. M. |last14=Kenneally |first15=B. |last15=Kindler |first16=I. |last16=Kojouharov |first17=R. |last17=Lang |first18=B. |last18=Lommel |first19=K. |last19=Miernik |first20=D. |last20=Miller |first21=K. J. |last21=Moody |first22=K. |last22=Morita |first23=K. |last23=Nishio |first24=A. G. |last24=Popeko |first25=J. B. |last25=Roberto |first26=J. |last26=Runke |first27=K. P. |last27=Rykaczewski |first28=S. |last28=Saro |first29=C. |last29=Schneidenberger |first30=H. J. |last30=Schött |first31=D. A. |last31=Shaughnessy |first32=M. A. |last32=Stoyer |first33=P. |last33=Thörle-Pospiech |first34=K. |last34=Tinschert |first35=N. |last35=Trautmann |first36=J. |last36=Uusitalo |first37=A. V. |last37=Yeremin |year=2016 |conference=Exotic Nuclei |editor1-first=Yu. E. |editor1-last=Peninozhkevich |editor2-first=Yu. G. |editor2-last=Sobolev |book-title=Exotic Nuclei: EXON-2016 Proceedings of the International Symposium on Exotic Nuclei |pages=155–164 |isbn=9789813226555}}</ref> but could not be confirmed,<ref name="Hoffman">{{cite web |url=https://jphysplus.iop.org/2015/10/02/weighty-matters-sigurd-hofmann-on-the-heaviest-of-nuclei/ |title=Weighty matters: Sigurd Hofmann on the heaviest of nuclei |last1=Adcock |first1=Colin |date=2 October 2015 |website=JPhys+ |publisher=Journal of Physics G: Nuclear and Particle Physics |access-date=23 September 2016 |archive-date=18 July 2023 |archive-url=https://web.archive.org/web/20230718025533/https://jphysplus.iop.org/2015/10/02/weighty-matters-sigurd-hofmann-on-the-heaviest-of-nuclei/ |url-status=dead }}</ref><ref>{{cite journal |last=Hofmann |first=Sigurd |date=August 2015 |title=Search for Isotopes of Element 120 on the Island of SHN |journal=Exotic Nuclei |pages=213–224 |doi=10.1142/9789814699464_0023|bibcode=2015exon.conf..213H |isbn=978-981-4699-45-7 }}</ref><ref name="Hofmann2016">{{cite journal |display-authors=3 |last1=Hofmann |first1=S. |last2=Heinz |first2=S. |first3=R. |last3=Mann |first4=J. |last4=Maurer |first5=G. |last5=Münzenberg |first6=S. |last6=Antalic |first7=W. |last7=Barth |first8=H. G. |last8=Burkhard |first9=L. |last9=Dahl |first10=K. |last10=Eberhardt |first11=R. |last11=Grzywacz |first12=J. H. |last12=Hamilton |first13=R. A. |last13=Henderson |first14=J. M. |last14=Kenneally |first15=B. |last15=Kindler |first16=I. |last16=Kojouharov |first17=R. |last17=Lang |first18=B. |last18=Lommel |first19=K. |last19=Miernik |first20=D. |last20=Miller |first21=K. J. |last21=Moody |first22=K. |last22=Morita |first23=K. |last23=Nishio |first24=A. G. |last24=Popeko |first25=J. B. |last25=Roberto |first26=J. |last26=Runke |first27=K. P. |last27=Rykaczewski |first28=S. |last28=Saro |first29=C. |last29=Scheidenberger |first30=H. J. |last30=Schött |first31=D. A. |last31=Shaughnessy |first32=M. A. |last32=Stoyer |first33=P. |last33=Thörle-Popiesch |first34=K. |last34=Tinschert |first35=N. |last35=Trautmann |first36=J. |last36=Uusitalo |first37=A. V. |last37=Yeremin |date=2016 |title=Review of even element super-heavy nuclei and search for element 120 |journal=The European Physical Journal A |volume=2016 |issue=52 |pages=180 |doi=10.1140/epja/i2016-16180-4|bibcode=2016EPJA...52..180H |s2cid=124362890 |url=https://www.researchgate.net/publication/304459935 }}</ref> and a different analysis suggested that what was observed was simply a random sequence of events.<ref>{{cite journal |last1=Heßberger |first1=F. P. |last2=Ackermann |first2=D. |date=2017 |title=Some critical remarks on a sequence of events interpreted to possibly originate from a decay chain of an element 120 isotope |journal=The European Physical Journal A |volume=53 |issue=123 |page=123 |doi=10.1140/epja/i2017-12307-5|bibcode=2017EPJA...53..123H |s2cid=125886824 }}</ref> In August–October 2011, a different team at the GSI using the TASCA facility tried a new, even more asymmetrical reaction:<ref name="Duellmann">{{cite web |last1=Düllmann |first1=C. E. |date=20 October 2011 |url=http://www.yumpu.com/en/document/view/7293741/superheavy-element-research-superheavy-element-research |title=Superheavy Element Research: News from GSI and Mainz |access-date=23 September 2016}}</ref><ref name="Yakushev" /> :{{nuclide|Cf|249}} + {{nuclide|Ti|50}} → {{nuclide|Ubn|299}}* → no atoms Because of its asymmetry,<ref>{{cite journal |last1=Siwek-Wilczyńska |first1=K. |last2=Cap |first2=T. |last3=Wilczyński |first3=J. |date=April 2010 |title=How can one synthesize the element ''Z'' = 120? |journal=International Journal of Modern Physics E |volume=19 |issue=4 |pages=500 |doi=10.1142/S021830131001490X|bibcode=2010IJMPE..19..500S }}</ref> the reaction between <sup>249</sup>Cf and <sup>50</sup>Ti was predicted to be the most favorable practical reaction for synthesizing unbinilium, though it produces a less neutron-rich isotope of unbinilium than any other reaction studied. No unbinilium atoms were identified.<ref name="Yakushev">{{cite web |url=http://asrc.jaea.go.jp/soshiki/gr/chiba_gr/workshop3/&Yakushev.pdf |title=Superheavy Element Research at TASCA |last1=Yakushev |first1=A. |date=2012 |website=asrc.jaea.go.jp |access-date=23 September 2016}}</ref> This reaction was investigated again in April to September 2012 at the GSI. This experiment used a <sup>249</sup>Bk target and a <sup>50</sup>Ti beam to produce [[ununennium|element 119]], but since <sup>249</sup>Bk decays to <sup>249</sup>Cf with a half-life of about 327 days, both elements 119 and 120 could be searched for simultaneously: :{{nuclide|Bk|249}} + {{nuclide|Ti|50}} → {{nuclide|Uue|299}}* → no atoms :{{nuclide|Cf|249}} + {{nuclide|Ti|50}} → {{nuclide|Ubn|299}}* → no atoms Neither element 119 nor element 120 was observed.<ref name="search">{{cite journal |last1=Khuyagbaatar |first1=J. |last2=Yakushev |first2=A. |last3=Düllmann |first3=Ch. E. |first4=D. |last4=Ackermann |first5=L.-L. |last5=Andersson |first6=M. |last6=Asai |first7=M. |last7=Block |first8=R. A. |last8=Boll |first9=H. |last9=Brand |first10=D. M. |last10=Cox |first11=M. |last11=Dasgupta |first12=X. |last12=Derkx |first13=A. |last13=Di Nitto |first14=K. |last14=Eberhardt |first15=J. |last15=Even |first16=M. |last16=Evers |first17=C. |last17=Fahlander |first18=U. |last18=Forsberg |first19=J. M. |last19=Gates <!--there are even more--> |display-authors=3 |date=December 2020 |title=Search for elements 119 and 120 |url=https://jyx.jyu.fi/bitstream/handle/123456789/73027/2/khuyagbaatarym0812.pdf |journal=Physical Review C |volume=102 |issue=6 |page=064602 |doi=10.1103/PhysRevC.102.064602 |bibcode=2020PhRvC.102f4602K |s2cid=229401931 |access-date=25 January 2021}}</ref> ====Planned==== The JINR's plans to investigate the <sup>249</sup>Cf+<sup>50</sup>Ti reaction in their new facility were disrupted by the 2022 [[Russian invasion of Ukraine]], after which collaboration between the JINR and other institutes completely ceased due to sanctions. Thus, <sup>249</sup>Cf could no longer be used as a target, as it would have to be produced at the [[Oak Ridge National Laboratory]] (ORNL) in the United States.<ref>{{cite web |url=http://www.jinr.ru/posts/how-are-new-chemical-elements-born/ |title=How are new chemical elements born? |last1=Sokolova |first1=Svetlana |last2=Popeko |first2=Andrei |date=24 May 2021 |website=jinr.ru |publisher=JINR |access-date=4 November 2021}}</ref><ref>{{cite web |url=https://en.unistra.fr/unistra-news/research/in-search-of-element-120-in-the-periodic-table-of-elements |title=In search of element 120 in the periodic table of elements |last=Riegert |first=Marion |date=19 July 2021 |website=en.unistra.fr |publisher=[[University of Strasbourg]] |access-date=20 February 2022}}</ref><ref name=ft>{{cite news |last=Ahuja |first=Anjana |date=18 October 2023 |title=Even the periodic table must bow to the reality of war |url=https://www.ft.com/content/6b6b0afc-39b2-4955-af5a-d0ea6b4d8306 |work=Financial Times |location= |access-date=20 October 2023}}</ref> Instead, the <sup>248</sup>Cm+<sup>54</sup>Cr reaction will be used.<ref>{{cite web |url=http://www.jinr.ru/posts/at-seminar-on-synthesis-of-element-120/ |title=At seminar on synthesis of element 120 |author=JINR |date=29 March 2022 |website=jinr.ru |publisher=JINR |access-date=17 April 2022}}</ref> In 2023, the director of the JINR, [[Grigory Trubnikov]], stated that he hoped that the experiments to synthesise element 120 will begin in 2025.<ref>{{cite news |last=Mayer |first=Anastasiya |date=31 May 2023 |language=ru |title="Большинство наших партнеров гораздо мудрее политиков" |trans-title="Most of our partners are much wiser than politicians" |url=https://www.vedomosti.ru/technology/characters/2023/05/31/977789-bolshinstvo-nashih-partnerov-mudree-politikov |work=[[Vedomosti]] |location= |access-date=15 August 2023 |quote=В этом году мы фактически завершаем подготовительную серию экспериментов по отладке всех режимов ускорителя и масс-спектрометров для синтеза 120-го элемента. Научились получать высокие интенсивности ускоренного хрома и титана. Научились детектировать сверхтяжелые одиночные атомы в реакциях с минимальным сечением. Теперь ждем, когда закончится наработка материала для мишени на реакторах и сепараторах у наших партнеров в «Росатоме» и в США: кюрий, берклий, калифорний. Надеюсь, что в 2025 г. мы полноценно приступим к синтезу 120-го элемента.}}</ref> In preparation for this, the JINR reported success in the <sup>238</sup>U+<sup>54</sup>Cr reaction in late 2023, making a new isotope of livermorium, [[livermorium-288|<sup>288</sup>Lv]]. This was an unexpectedly good result; the aim had been to experimentally determine the cross-section of a reaction with <sup>54</sup>Cr projectiles and prepare for the synthesis of element 120. It is the first successful reaction producing a superheavy element using an actinide target and a projectile heavier than <sup>48</sup>Ca.<ref name=Lv288>{{cite news |url=http://www.jinr.ru/posts/v-lyar-oiyai-vpervye-v-mire-sintezirovan-livermorij-288/ |title=В ЛЯР ОИЯИ впервые в мире синтезирован ливерморий-288 |trans-title=Livermorium-288 was synthesized for the first time in the world at FLNR JINR |language=ru |date=23 October 2023 |publisher=Joint Institute for Nuclear Research |access-date=18 November 2023}}</ref> The team at the [[Lawrence Berkeley National Laboratory]] (LBNL) in [[Berkeley, California|Berkeley]], [[California]], United States plans to use the 88-inch cyclotron to make new elements using <sup>50</sup>Ti projectiles.<ref name=usprogram/> First, the <sup>244</sup>Pu+<sup>50</sup>Ti reaction was tested, successfully creating two atoms of <sup>290</sup>Lv in 2024. Since this was successful, an attempt to make element 120 in the <sup>249</sup>Cf+<sup>50</sup>Ti reaction is planned to begin in 2025.<ref>{{cite web |url=https://newscenter.lbl.gov/2024/07/23/a-new-way-to-make-element-116-opens-the-door-to-heavier-atoms/ |title=A New Way to Make Element 116 Opens the Door to Heavier Atoms |last=Biron |first=Lauren |date=23 July 2024 |website=lbl.gov |publisher=Lawrence Berkeley National Laboratory |access-date=24 July 2024 |quote=}}</ref><ref>{{cite journal |last1=Bourzac |first1=Katherine |date=23 July 2024 |title=Heaviest element yet within reach after major breakthrough |url=https://www.nature.com/articles/d41586-024-02416-3 |journal=Nature |volume= |issue= |pages= |doi=10.1038/d41586-024-02416-3 |access-date=24 July 2024}}</ref><ref>{{cite news |last=Service |first=Robert F. |date=23 July 2024 |title=U.S. back in race to forge unknown, superheavy elements |url=https://www.science.org/content/article/u-s-back-race-forge-unknown-superheavy-elements |work=Science |location= |access-date=24 July 2024}}</ref> The [[Lawrence Livermore National Laboratory]] (LLNL), which previously collaborated with the JINR, will collaborate with the LBNL on this project.<ref>{{cite journal |last1=Nelson |first1=Felicity |date=15 August 2024 |title=How Japan Took the Lead in the Race to Discover Element 119 |url=https://pubs.acs.org/doi/10.1021/acscentsci.4c01266 |journal=ACS Central Science |volume= |issue= |pages= |doi=10.1021/acscentsci.4c01266 |access-date=13 September 2024|doi-access=free |pmc=11539895 }}</ref> The team at the Heavy Ion Research Facility in [[Lanzhou]], which is operated by the [[Institute of Modern Physics]] (IMP) of the [[Chinese Academy of Sciences]], also plans to synthesise elements 119 and 120. The reactions used will involve actinide targets (e.g. <sup>243</sup>Am, <sup>248</sup>Cm) and first-row transition metal projectiles (e.g. <sup>50</sup>Ti, <sup>51</sup>V, <sup>54</sup>Cr, <sup>55</sup>Mn).<ref>{{cite journal |last1=Gan |first1=Z. G. |last2=Huang |first2=W. X. |last3=Zhang |first3=Z. Y. |last4=Zhou |first4=X. H. |last5=Xu |first5=H. S. |date=2022 |title=Results and perspectives for study of heavy and super-heavy nuclei and elements at IMP/CAS |url= |journal=The European Physical Journal A |volume=58 |issue=158 |pages= |doi=10.1140/epja/s10050-022-00811-w |access-date=}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Unbinilium
(section)
Add topic