Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Titanium
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Chemical properties === [[File:Titanium products.jpg|thumb|left|Titanium products: plate, tube, rod, powder]] [[File:Titanium in water Pourbaix diagram.png|thumb|[[Pourbaix diagram]] for titanium in pure water, perchloric acid, or sodium hydroxide<ref name="medusa">Puigdomenech, Ignasi (2004) [https://web.archive.org/web/20130605034847/http://www.kth.se/che/medusa ''Hydra/Medusa Chemical Equilibrium Database and Plotting Software''], KTH Royal Institute of Technology.</ref>]] Like [[aluminium]] and [[magnesium]], the surface of titanium metal and its alloys [[oxidize]] immediately upon exposure to air to form a thin non-porous [[Passivation (chemistry)|passivation]] layer that protects the bulk metal from further oxidation or corrosion.<ref name="EBC" /> When it first forms, this protective layer is only 1–2 [[nanometre|nm]] thick but it continues to grow slowly, reaching a thickness of 25 nm in four years.<ref name="Emsley2001p453" /> This layer gives titanium excellent resistance to corrosion against oxidizing acids, but it will dissolve in dilute [[hydrofluoric acid]], hot hydrochloric acid, and hot sulfuric acid. Titanium is capable of withstanding attack by dilute [[sulfuric acid|sulfuric]] and [[hydrochloric acid]]s at room temperature, chloride solutions, and most organic acids.<ref name=LANL/> However, titanium is corroded by concentrated acids.<ref>{{cite journal |author1=Casillas, N. |author2=Charlebois, S. |author3=Smyrl, W.H. |author4=White, H.S. |year=1994 |title=Pitting corrosion of titanium |journal=J. Electrochem. Soc. |volume=141 |issue=3 |pages=636–642 |doi=10.1149/1.2054783 |bibcode=1994JElS..141..636C |url=https://apps.dtic.mil/dtic/tr/fulltext/u2/a274980.pdf |url-status=live |archive-url=https://web.archive.org/web/20200827231129/https://apps.dtic.mil/dtic/tr/fulltext/u2/a274980.pdf |archive-date=27 August 2020}}</ref> Titanium is a very reactive metal that burns in normal air at lower temperatures than the melting point. Melting is possible only in an inert atmosphere or vacuum. At {{convert|550|°C|°F}}, it combines with chlorine.<ref name=LANL/> It also reacts with the other halogens and absorbs hydrogen.<ref name=HistoryAndUse/> Titanium readily reacts with oxygen at {{convert|1200|°C|°F}} in air, and at {{convert|610|°C|°F}} in pure oxygen, forming [[titanium dioxide]].<ref name="TICE6th" /> Titanium is one of the few elements that burns in pure nitrogen gas, reacting at {{convert|800|°C|°F}} to form [[titanium nitride]], which causes embrittlement.<ref name=titaniumindustry>{{cite book |title=Industrial Applications of Titanium and Zirconium|chapter-url= https://books.google.com/books?id=0Adr4zleybgC&pg=PA112 |page= 112|first= A.L. |last= Forrest |chapter= Effects of Metal Chemistry on Behavior of Titanium in Industrial Applications |year=1981}}</ref> Because of its high reactivity with oxygen, nitrogen, and many other gases, titanium that is evaporated from [[electrical filament|filaments]] is the basis for [[titanium sublimation pump]]s, in which titanium serves as a scavenger for these gases by chemically binding to them. Such pumps inexpensively produce extremely low pressures in [[ultra-high vacuum]] systems.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Titanium
(section)
Add topic