Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Thread (computing)
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Processes=== {{Main|Process (computing)}} At the kernel level, a ''process'' contains one or more ''kernel threads'', which share the process's resources, such as memory and file handles β a process is a unit of resources, while a thread is a unit of scheduling and execution. Kernel scheduling is typically uniformly done preemptively or, less commonly, cooperatively. At the user level a process such as a [[runtime system]] can itself schedule multiple threads of execution. If these do not share data, as in Erlang, they are usually analogously called processes,<ref>{{Cite web |title=Erlang: 3.1 Processes |url=http://www.erlang.org/doc/getting_started/conc_prog.html}}</ref> while if they share data they are usually called ''(user) threads'', particularly if preemptively scheduled. Cooperatively scheduled user threads are known as ''[[fiber (computer science)|fibers]]''; different processes may schedule user threads differently. User threads may be executed by kernel threads in various ways (one-to-one, many-to-one, many-to-many). The term "[[light-weight process]]" variously refers to user threads or to kernel mechanisms for scheduling user threads onto kernel threads. A ''process'' is a "heavyweight" unit of kernel scheduling, as creating, destroying, and switching processes is relatively expensive. Processes own [[Resource (computer science)|resources]] allocated by the operating system. Resources include memory (for both code and data), [[Handle (computing)|file handles]], sockets, device handles, windows, and a [[process control block]]. Processes are ''isolated'' by [[process isolation]], and do not share address spaces or file resources except through explicit methods such as inheriting file handles or shared memory segments, or mapping the same file in a shared way β see [[interprocess communication]]. Creating or destroying a process is relatively expensive, as resources must be acquired or released. Processes are typically preemptively multitasked, and process switching is relatively expensive, beyond basic cost of [[context switching]], due to issues such as cache flushing (in particular, process switching changes virtual memory addressing, causing invalidation and thus flushing of an untagged [[translation lookaside buffer]] (TLB), notably on x86).
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Thread (computing)
(section)
Add topic