Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Tau
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Mathematics === * [[Divisor function]] in number theory, also denoted ''d'' or σ<sub>0</sub><ref>{{Cite web|url=http://mathworld.wolfram.com/DivisorFunction.html|title=Divisor Function|last=Weisstein|first=Eric W.|date=27 Oct 2017|website=MathWorld --A Wolfram Web Resource.|archive-url=https://web.archive.org/web/20170629140345/http://mathworld.wolfram.com/DivisorFunction.html|archive-date=29 Jun 2017|url-status=live|access-date=28 Oct 2017}}</ref><ref group="note" name=":0">The date given on the source is after that of the archive. This is because the original publishing date is unknown, so the latest update date is stated instead.</ref> * [[Ramanujan tau function]]<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Tau Function |url=https://mathworld.wolfram.com/TauFunction.html |access-date=2025-01-31 |website=mathworld.wolfram.com |language=en |quote=A function τ(n) related to the divisor function σ(n), also sometimes called Ramanujan's tau function.}}</ref><ref>{{Cite web |title=DLMF: §27.14 Unrestricted Partitions ‣ Additive Number Theory ‣ Chapter 27 Functions of Number Theory |url=https://dlmf.nist.gov/27.14#vi |access-date=2025-01-31 |website=dlmf.nist.gov}}</ref> * [[Golden ratio]] (1.618...), although φ ([[phi]]) is more common<ref>{{Cite web|url=http://mathworld.wolfram.com/GoldenRatio.html|title=Golden Ratio.|last=Weisstein|first=Eric W.|date=27 Oct 2017|website=Mathworld -- A Wolfram Web Resource|archive-url=https://web.archive.org/web/20170822072337/http://mathworld.wolfram.com/GoldenRatio.html|archive-date=22 Aug 2017|url-status=live|access-date=28 Oct 2017}}</ref><ref name=":0" group="note" /> * [[Kendall tau rank correlation coefficient]] in statistics<ref>{{Cite journal|last=Ghent|first=A. W.|date=June 1963|title=Kendall's "Tau" Coefficient as an Index of Similarity in Comparisons of Plant or Animal Communities|url=https://www.cambridge.org/core/journals/canadian-entomologist/article/kendalls-tau-coefficient-as-an-index-of-similarity-in-comparisons-of-plant-or-animal-communities/B791FA0F9D0450699CF9F1AE92D5DA9D|journal=The Canadian Entomologist|volume=95| issue = 6|pages=568–575|via=Cambridge University Press|doi=10.4039/ent95568-6|s2cid=84897435 }}</ref> * [[Stopping time]] in stochastic processes.<ref>{{Cite web|url=https://almostsure.wordpress.com/2009/11/23/sigma-algebras-at-a-stopping-time/|title=Sigma Algebras at a Stopping Time|last=Lowther|first=George|date=23 Nov 2009|website=Almost Sure at Wordpress|archive-url=https://web.archive.org/web/20161221152426/https://almostsure.wordpress.com/2009/11/23/sigma-algebras-at-a-stopping-time/|archive-date=21 Dec 2016|url-status=live|access-date=28 Oct 2017}}</ref><ref group="note" name=":1">The archived version of this source may take a few minutes to render the [[TeX]] math codes properly.</ref> * [[Tau (mathematical constant)|Tau]], the ratio of the circumference to the radius of a circle, which is equal to 2[[pi|{{pi}}]] (6.28318...) Tau is also used to calculate how many rads are in a circle. <ref>{{Cite web|url=https://tauday.com/tau-manifesto|title=The Tau Manifesto|last=Hartl|first=Michael|author-link=Michael Hartl|date=28 Jun 2010|website=Tau Day|archive-url=https://web.archive.org/web/20171007085119/https://tauday.com/tau-manifesto|archive-date=7 Oct 2017|url-status=live|access-date=28 Oct 2017}}</ref><ref>{{Cite web|last=Bartholomew|first=Randyn Charles|date=June 25, 2014|title=Let's Use Tau--It's Easier Than Pi|url=https://www.scientificamerican.com/article/let-s-use-tau-it-s-easier-than-pi/|url-status=live|archive-url=https://web.archive.org/web/20170908232803/https://www.scientificamerican.com/article/let-s-use-tau-it-s-easier-than-pi/|archive-date=September 8, 2017|access-date=2020-08-31|website=Scientific American|language=en}}</ref> * [[Tau function (disambiguation)|Tau function]]s, several * [[Torsion of a curve]] in differential geometry<ref>{{Cite web|url=http://mathworld.wolfram.com/Torsion.html|title=Torsion |last=Weisstein|first=Eric W. |website=Wolfram MathWorld|archive-url=https://web.archive.org/web/20170829220240/http://mathworld.wolfram.com/Torsion.html|archive-date=29 Aug 2017|url-status=live|access-date=28 Oct 2017}}</ref><ref name=":0" group="note" /> * [[Translation (geometry)|Translation]] in Euclidean geometry (although the Latin letter [[T]] is used more often) * The [[Prouhet–Thue–Morse constant]]<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Thue-Morse Sequence |url=https://mathworld.wolfram.com/Thue-MorseSequence.html |access-date=2025-01-31 |website=mathworld.wolfram.com |language=en |quote=The Thue-Morse sequence, also called the Morse-Thue sequence or Prouhet-Thue-Morse sequence (Allouche and Cosnard 2000), is one of a number of related sequences of numbers obtained from the parities of the counts of 1's in the binary representation of the nonnegative integers.}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Tau
(section)
Add topic