Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Surface (topology)
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Extrinsically defined surfaces and embeddings== [[Image:Sphere wireframe.svg|left|thumb|250px|A sphere can be defined parametrically (by ''x'' = ''r'' sin ''θ'' cos ''φ'', ''y'' = ''r'' sin ''θ'' sin ''φ'', ''z'' = ''r'' cos ''θ'') or implicitly (by {{nowrap|''x''<sup>2</sup> + ''y''<sup>2</sup> + ''z''<sup>2</sup> − ''r''<sup>2</sup> {{=}} 0}}.)]] Historically, surfaces were initially defined as subspaces of Euclidean spaces. Often, these surfaces were the [[locus (mathematics)|locus]] of [[root of a function|zeros]] of certain functions, usually polynomial functions. Such a definition considered the surface as part of a larger (Euclidean) space, and as such was termed ''extrinsic''. In the previous section, a surface is defined as a topological space with certain properties, namely Hausdorff and locally Euclidean. This topological space is not considered a subspace of another space. In this sense, the definition given above, which is the definition that mathematicians use at present, is ''intrinsic''. A surface defined as intrinsic is not required to satisfy the added constraint of being a subspace of Euclidean space. It may seem possible for some surfaces defined intrinsically to not be surfaces in the extrinsic sense. However, the [[Whitney embedding theorem]] asserts every surface can in fact be embedded homeomorphically into Euclidean space, in fact into '''E'''<sup>4</sup>: The extrinsic and intrinsic approaches turn out to be equivalent. In fact, any compact surface that is either orientable or has a boundary can be embedded in '''E'''<sup>3</sup>; on the other hand, the real projective plane, which is compact, non-orientable and without boundary, cannot be embedded into '''E'''<sup>3</sup> (see Gramain). [[Steiner surface]]s, including [[Boy's surface]], the [[Roman surface]] and the [[cross-cap]], are models of the real projective plane in '''E'''<sup>3</sup>, but only the Boy surface is an [[immersion (mathematics)|immersed surface]]. All these models are singular at points where they intersect themselves. The [[Alexander horned sphere]] is a well-known [[pathological (mathematics)|pathological]] embedding of the two-sphere into the three-sphere. [[Image:KnottedTorus.svg|right|thumb|A knotted torus.]] The chosen embedding (if any) of a surface into another space is regarded as extrinsic information; it is not essential to the surface itself. For example, a torus can be embedded into '''E'''<sup>3</sup> in the "standard" manner (which looks like a [[bagel]]) or in a [[knot (mathematics)|knotted]] manner (see figure). The two embedded tori are homeomorphic, but not [[Homotopy#Isotopy|isotopic]]: They are topologically equivalent, but their embeddings are not. The [[image (mathematics)|image]] of a continuous, [[injection (mathematics)|injective]] function from '''R'''<sup>2</sup> to higher-dimensional '''R'''<sup>n</sup> is said to be a [[parametric surface]]. Such an image is so-called because the ''x''- and ''y''- directions of the domain '''R'''<sup>2</sup> are 2 variables that parametrize the image. A parametric surface need not be a topological surface. A [[surface of revolution]] can be viewed as a special kind of parametric surface. If ''f'' is a smooth function from '''R'''<sup>3</sup> to '''R''' whose [[gradient]] is nowhere zero, then the [[locus (mathematics)|locus]] of [[root of a function|zeros]] of ''f'' does define a surface, known as an ''[[implicit surface]]''. If the condition of non-vanishing gradient is dropped, then the zero locus may develop singularities. {{Clear}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Surface (topology)
(section)
Add topic