Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Stirling's approximation
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Higher orders === In fact, further corrections can also be obtained using Laplace's method. From previous result, we know that <math>\Gamma(x) \sim x^x e^{-x}</math>, so we "peel off" this dominant term, then perform two changes of variables, to obtain:<math display="block">x^{-x}e^x\Gamma(x) = \int_\R e^{x(1+t-e^t)}dt</math>To verify this: <math>\int_\R e^{x(1+t-e^t)}dt \overset{t \mapsto \ln t}{=} e^x \int_0^\infty t^{x-1} e^{-xt} dt \overset{t \mapsto t/x}{=} x^{-x} e^x \int_0^\infty e^{-t} t^{x-1} dt = x^{-x} e^x \Gamma(x)</math>. Now the function <math>t \mapsto 1+t - e^t</math> is unimodal, with maximum value zero. Locally around zero, it looks like <math>-t^2/2</math>, which is why we are able to perform Laplace's method. In order to extend Laplace's method to higher orders, we perform another change of variables by <math>1+t-e^t = -\tau^2/2</math>. This equation cannot be solved in closed form, but it can be solved by serial expansion, which gives us <math>t = \tau - \tau^2/6 + \tau^3/36 + a_4 \tau^4 + O(\tau^5) </math>. Now plug back to the equation to obtain<math display="block">x^{-x}e^x\Gamma(x) = \int_\R e^{-x\tau^2/2}(1-\tau/3 + \tau^2/12 + 4a_4 \tau^3 + O(\tau^4)) d\tau = \sqrt{2\pi}(x^{-1/2} + x^{-3/2}/12) + O(x^{-5/2})</math>notice how we don't need to actually find <math>a_4</math>, since it is cancelled out by the integral. Higher orders can be achieved by computing more terms in <math>t = \tau + \cdots</math>, which can be obtained programmatically.{{NoteTag|note=For example, a program in Mathematica: <syntaxhighlight lang="mathematica"> series = tau - tau^2/6 + tau^3/36 + tau^4*a + tau^5*b; (*pick the right a,b to make the series equal 0 at higher orders*) Series[tau^2/2 + 1 + t - Exp[t] /. t -> series, {tau, 0, 8}] (*now do the integral*) integral = Integrate[Exp[-x*tau^2/2] * D[series /. a -> 0 /. b -> 0, tau], {tau, -Infinity, Infinity}]; Simplify[integral/Sqrt[2*Pi]*Sqrt[x]] </syntaxhighlight>|name=mathematica-program|content=content|text=text}} Thus we get Stirling's formula to two orders:<math display="block"> n! = \sqrt{2\pi n}\left(\frac{n}{e}\right)^n \left(1 + \frac{1}{12 n}+O\left(\frac{1}{n^2}\right) \right). </math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Stirling's approximation
(section)
Add topic