Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Spiral
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Geometric properties === The following considerations are dealing with spirals, which can be described by a polar equation <math>r=r(\varphi)</math>, especially for the cases <math>r(\varphi)=a\varphi^n</math> (Archimedean, hyperbolic, Fermat's, lituus spirals) and the logarithmic spiral <math>r=ae^{k\varphi}</math>. [[File:Sektor-steigung-pk-def.svg|thumb|Definition of sector (light blue) and polar slope angle <math>\alpha</math>]] ;Polar slope angle The angle <math>\alpha</math> between the spiral tangent and the corresponding polar circle (see diagram) is called ''angle of the polar slope'' and <math>\tan \alpha</math> the ''polar slope''. From [[polar coordinate system#Vector calculus|vector calculus in polar coordinates]] one gets the formula :<math>\tan\alpha=\frac{r'}{r}\ .</math> Hence the slope of the spiral <math>\;r=a\varphi^n \;</math> is * <math>\tan\alpha=\frac{n}{\varphi}\ .</math> In case of an ''Archimedean spiral'' (<math>n=1</math>) the polar slope is <math>\; \tan\alpha=\tfrac{1}{\varphi}\ .</math> In a ''logarithmic spiral'', <math>\ \tan\alpha=k\ </math> is constant. ;Curvature The curvature <math>\kappa</math> of a curve with polar equation <math>r=r(\varphi)</math> is :<math>\kappa = \frac{r^2 + 2(r')^2 - r\; r''}{(r^2+(r')^2)^{3/2}}\ .</math> For a spiral with <math>r=a\varphi^n</math> one gets * <math>\kappa = \dotsb = \frac{1}{a\varphi^{n-1}}\frac{\varphi^2+n^2+n}{(\varphi^2+n^2)^{3/2}}\ .</math> In case of <math>n=1</math> ''(Archimedean spiral)'' <math>\kappa=\tfrac{\varphi^2+2}{a(\varphi^2+1)^{3/2}}</math>.<br> Only for <math>-1<n<0 </math> the spiral has an ''inflection point''. The curvature of a ''logarithmic spiral'' <math>\; r=a e^{k\varphi} \;</math> is <math>\; \kappa=\tfrac{1}{r\sqrt{1+k^2}} \; .</math> ;Sector area The area of a sector of a curve (see diagram) with polar equation <math>r=r(\varphi)</math> is :<math>A=\frac{1}{2}\int_{\varphi_1}^{\varphi_2} r(\varphi)^2\; d\varphi\ .</math> For a spiral with equation <math>r=a\varphi^n\; </math> one gets * <math>A=\frac{1}{2}\int_{\varphi_1}^{\varphi_2} a^2\varphi^{2n}\; d\varphi =\frac{a^2}{2(2n+1)}\big(\varphi_2^{2n+1}- \varphi_1^{2n+1}\big)\ , \quad \text{if}\quad n\ne-\frac{1}{2}, </math> :<math>A=\frac{1}{2}\int_{\varphi_1}^{\varphi_2} \frac{a^2}{\varphi}\; d\varphi =\frac{a^2}{2}(\ln\varphi_2-\ln\varphi_1)\ ,\quad \text{if} \quad n=-\frac{1}{2}\ .</math> The formula for a ''logarithmic spiral'' <math>\; r=a e^{k\varphi} \;</math> is <math>\ A=\tfrac{r(\varphi_2)^2-r(\varphi_1)^2)}{4k}\ .</math> ;Arc length The length of an arc of a curve with polar equation <math>r=r(\varphi)</math> is :<math>L=\int\limits_{\varphi_1}^{\varphi_2}\sqrt{\left(r^\prime(\varphi)\right)^2+r^2(\varphi)}\,\mathrm{d}\varphi \ .</math> For the spiral <math>r=a\varphi^n\; </math> the length is * <math>L=\int_{\varphi_1}^{\varphi_2} \sqrt{\frac{n^2r^2}{\varphi^2} +r^2}\; d\varphi = a\int\limits_{\varphi_1}^{\varphi_2}\varphi^{n-1}\sqrt{n^2+\varphi^2}d\varphi \ .</math> Not all these integrals can be solved by a suitable table. In case of a Fermat's spiral, the integral can be expressed by [[elliptic integral]]s only. The arc length of a ''logarithmic spiral'' <math>\; r=a e^{k\varphi} \;</math> is <math>\ L=\tfrac{\sqrt{k^2+1}}{k}\big(r(\varphi_2)-r(\varphi_1)\big) \ .</math> ;Circle inversion The [[Circle inversion|inversion at the unit circle]] has in polar coordinates the simple description: <math>\ (r,\varphi) \mapsto (\tfrac{1}{r},\varphi)\ </math>. * The image of a spiral <math>\ r= a\varphi^n\ </math> under the inversion at the unit circle is the spiral with polar equation <math>\ r= \tfrac{1}{a}\varphi^{-n}\ </math>. For example: The inverse of an Archimedean spiral is a hyperbolic spiral. :A logarithmic spiral <math>\; r=a e^{k\varphi} \;</math> is mapped onto the logarithmic spiral <math>\; r=\tfrac{1}{a} e^{-k\varphi} \; .</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Spiral
(section)
Add topic