Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Spaced repetition
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Algorithms== There are several families of spaced repetition algorithms: * [[Leitner system]] – a simple scheme that uses five levels and an arbitrary number of study stages * [[Neural network (machine learning)|Neural-network-based]]<ref>{{Cite web |last1=Dreger |first1=Bartosz |last2=Wozniak |first2=Piotr |url=https://www.supermemo.com/en/archives1990-2015/english/ol/nn_train |title=Implementing a neural network for repetition spacing |website=www.supermemo.com |archive-url=https://web.archive.org/web/20220821061451/https://www.supermemo.com/en/archives1990-2015/english/ol/nn_train |access-date=July 15, 2017|archive-date=August 21, 2022 }}</ref><ref>{{cite arXiv |last=Balepur |first=Nishant |date=2024-02-19 |title=KARL: Knowledge-Aware Retrieval and Representations aid Retention and Learning in Students |class=cs.CL |eprint=2402.12291}}</ref> * The SM family of algorithms ([[SuperMemo#Algorithms]]), ranging from SM-0 (a paper-and-pencil prototype) to SM-18,<ref>{{Cite web |title=Algorithm SM-18 |url=https://supermemo.guru/wiki/Algorithm_SM-18 |website=www.supermemo.guru |url-status=live |archive-url=https://web.archive.org/web/20240313020019/https://supermemo.guru/wiki/Algorithm_SM-18 |archive-date=2024-03-13 |last=Wozniak |first=Piotr |date=2019-05-02}}</ref> which is built into SuperMemo 18 and 19. * The DASH<ref>{{cite thesis |last=Lindsey |first=Robert Victor |date=2014 |title=Probabilistic Models of Student Learning and Forgetting |url=https://scholar.colorado.edu/concern/graduate_thesis_or_dissertations/zp38wc97m |institution=University of Colorado Boulder |type=Master’s thesis}}</ref><ref>{{cite thesis |last=Randazzo |first=Giacomo |date=2022-04-28 |title=Memory Models for Spaced Repetition Systems |hdl=10589/186407 |url-status=live |url=https://hdl.handle.net/10589/186407 |institution=Politecnico di Milano |type=Master’s thesis}}</ref> (''Difficulty, Ability and Study History'') family * SSP-MMC<ref>{{Cite web |last=Ye |first=Junyao |date=2023-11-13 |title=Spaced Repetition Algorithm: A Three-Day Journey from Novice to Expert |url=https://github.com/open-spaced-repetition/fsrs4anki/wiki/Spaced-Repetition-Algorithm:-A-Three%E2%80%90Day-Journey-from-Novice-to-Expert |url-status=live |archive-url=https://web.archive.org/web/20231113115450/https://github.com/open-spaced-repetition/fsrs4anki/wiki/Spaced-Repetition-Algorithm:-A-Three%E2%80%90Day-Journey-from-Novice-to-Expert |archive-date=2023-11-13 |access-date=2023-11-14 |website=[[GitHub]]}}</ref><ref>{{Cite conference |last1=Ye |first1=Junyao |last2=Su |first2=Jingyong |last3=Cao |first3=Yilong |chapter=A Stochastic Shortest Path Algorithm for Optimizing Spaced Repetition Scheduling |date=2022-08-14 |title=Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining |series=KDD '22 |location=New York, NY, USA |publisher=Association for Computing Machinery |pages=4381–4390 |doi=10.1145/3534678.3539081 |isbn=978-1-4503-9385-0|s2cid=251518206 }}</ref><ref>{{Cite journal |last1=Ye |first1=Junyao |last2=Su |first2=Jingyong |last3=Nie |first3=Liqiang |last4=Cao |first4=Yilong |last5=Chen |first5=Yongyong |title=Optimizing Spaced Repetition Schedule by Capturing the Dynamics of Memory |date=2023-10-01 |journal=IEEE Transactions on Knowledge and Data Engineering |volume=35 |issue=10 |pages=10085–10097 |doi=10.1109/TKDE.2023.3251721}}</ref> (''Stochastic Shortest Path Minimize Memorization Cost'') and the closely related FSRS<ref>{{Cite web |last=Ye |first=Junyao |date=2023-11-06 |title=fsrs4anki |url=https://github.com/open-spaced-repetition/fsrs4anki/blob/a9bf76eb05ac946e4b4dab5700d42d384dd82101/README.md |url-status=live |archive-url=https://web.archive.org/web/20230619004223/https://github.com/open-spaced-repetition/fsrs4anki/blob/main/README.md |archive-date=2023-06-19 |access-date=2023-11-14 |website=[[GitHub]]}}</ref> (''Free Spaced Repetition Scheduler''), which is available in Anki starting with release 23.10<ref>{{Cite web |last=Damien |first=Elmes |date=2023-10-31 |title=Anki Release 23.10 |url=https://github.com/ankitects/anki/releases/tag/23.10 |url-status=live |archive-url=https://web.archive.org/web/20231103204635/https://github.com/ankitects/anki/releases/tag/23.10 |archive-date=2023-11-03 |access-date=2023-11-14 |website=[[GitHub]] |publisher=GitHub}}</ref> and in RemNote starting with release 1.16<ref>{{Cite web |date=2024-04-23 |title=RemNote Release 1.16 |url=https://feedback.remnote.com/changelog/remnote-1-16-ultimate-spaced-repetition |access-date=2024-04-25 }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Spaced repetition
(section)
Add topic