Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Solenoid
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Finite continuous solenoid === A finite solenoid is a solenoid with finite length. Continuous means that the solenoid is not formed by discrete coils but by a sheet of conductive material. We assume the current is uniformly distributed on the surface of the solenoid, with a surface [[current density]] ''K''; in [[cylindrical coordinate]]s: <math display="block">\vec{K} = \frac{I}{l} \hat{\phi} .</math> The magnetic field can be found using the [[vector potential]], which for a finite solenoid with radius ''R'' and length ''l'' in cylindrical coordinates <math>(\rho, \phi, z)</math> is<ref>{{cite web |url=http://nukephysik101.files.wordpress.com/2011/07/finite-length-solenoid-potential-and-field.pdf |title=Archived copy |access-date=28 March 2013 |url-status=live |archive-url=https://web.archive.org/web/20140410113804/http://nukephysik101.files.wordpress.com/2011/07/finite-length-solenoid-potential-and-field.pdf |archive-date=10 April 2014 }}</ref><ref>{{cite web |url=http://nukephysik101.files.wordpress.com/2021/07/finite-length-solenoid-potential-and-field-1.pdf |title=Archived copy |access-date=10 July 2021 |url-status=live |archive-url=https://web.archive.org/web/20210719191335/https://nukephysik101.files.wordpress.com/2021/07/finite-length-solenoid-potential-and-field-1.pdf |archive-date=19 July 2021 }}</ref> <math display="block">A_\phi = \frac{\mu_0 I}{\pi } \frac{R}{l} \left[ \frac{\zeta}{\sqrt{(R+\rho)^2+\zeta^2}} \left( \frac{m+n-mn}{mn}K(m)-\frac{1}{m}E(m) +\frac{n-1}{n} \Pi(n, m) \right) \right]_{\zeta_-}^{\zeta_+},</math> [[file:Finite Length Solenoid field radius 1 length 1.jpg|upright=1.5|thumb|[[Magnetic field]] lines and density created by a solenoid with surface [[current density]]]] Where: * <math>\zeta_{\pm}=z\pm \frac{l}{2}</math>, * <math>n = \frac{4R\rho}{(R+\rho)^2}</math>, * <math>m = \frac{4R\rho}{(R+\rho)^2+\zeta^2}</math>, * <math>K(m)=\int_0^{\frac\pi 2}\frac{d\theta}{\sqrt{1-m \sin^2 \theta }}</math>, * <math>E(m)=\int_0^{\frac\pi 2}{\sqrt{1-m \sin^2 \theta} } \,d\theta</math> , * <math>\Pi(n,m)=\int_0^{\frac\pi 2}\frac{d\theta}{(1-n \sin^2 \theta)\sqrt{1-m \sin^2 \theta }}</math> . Here, <math>K(m)</math>, <math>E(m)</math>, and <math>\Pi(n,m)</math> are complete [[elliptic integral]]s of the first, second, and third kind. Using: <math display="block">\vec{B} = \nabla \times \vec{A},</math> The magnetic flux density is obtained as<ref>{{cite journal |first1=Karl Friedrich |last1=Müller |title=Berechnung der Induktivität von Spulen |language=de |trans-title=Calculating the Inductance of Coils |journal=Archiv für Elektrotechnik |volume=17 |issue=3 |date=1 May 1926 |pages=336–353 |issn=1432-0487 |doi=10.1007/BF01655986 |s2cid=123686159 }}</ref><ref>{{cite journal |first1=Edmund E. |last1=Callaghan |first2=Stephen H. |last2=Maslen |title=The magnetic field of a finite solenoid |language=en |journal=NASA Technical Reports |volume=NASA-TN-D-465 |issue=E-900 |date=1 October 1960 |url=https://ntrs.nasa.gov/search.jsp?R=19980227402}}</ref><ref name="CaciagliBaars2018">{{cite journal |last1=Caciagli|first1=Alessio |last2=Baars|first2=Roel J. |last3=Philipse|first3=Albert P. |last4=Kuipers|first4=Bonny W.M. |title=Exact expression for the magnetic field of a finite cylinder with arbitrary uniform magnetization |journal=Journal of Magnetism and Magnetic Materials | volume=456 | year=2018|pages=423–432 | issn=0304-8853 | doi=10.1016/j.jmmm.2018.02.003 | bibcode=2018JMMM..456..423C |hdl=1874/363313 | s2cid=126037802|hdl-access=free }}</ref> <math display="block">B_\rho = \frac{\mu_0 I}{4\pi} \frac{1}{l\,\rho} \left[\sqrt{(R+\rho)^2+\zeta^2} \biggl( (m-2)K(m) + 2 E(m)\biggr) \right]_{\zeta_-}^{\zeta_+},</math> <math display="block">B_z = \frac{\mu_0 I}{2\pi} \frac{1}{l} \left[ \frac{\zeta}{\sqrt{(R+\rho)^2+\zeta^2}} \left(K(m) + \frac{R-\rho}{R+\rho} \Pi(n, m)\right)\right]_{\zeta_-}^{\zeta_+}.</math> On the symmetry axis, the radial component vanishes, and the axial field component is <math display="block">B_z = \frac{\mu_0 NI}{2}\left( \frac{z+l/2}{l \sqrt{R^2+(z+l/2)^2}} - \frac{z-l/2}{l \sqrt{R^2+(z-l/2)^2}}\right).</math> Inside the solenoid, far away from the ends (<math>l/2 - |z| \gg R</math>), this tends towards the constant value <math>B = \mu_0 N I/l</math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Solenoid
(section)
Add topic