Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Skew-symmetric matrix
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Vector space structure === As a result of the first two properties above, the set of all skew-symmetric matrices of a fixed size forms a [[vector space]]. The space of <math display=inline>n \times n</math> skew-symmetric matrices has [[Dimension of a vector space|dimension]] <math display=inline>\frac{1}{2}n(n - 1).</math> Let <math>\mbox{Mat}_n</math> denote the space of <math display=inline>n \times n</math> matrices. A skew-symmetric matrix is determined by <math display=inline>\frac{1}{2}n(n - 1)</math> scalars (the number of entries above the [[main diagonal]]); a [[symmetric matrix]] is determined by <math display=inline>\frac{1}{2}n(n + 1)</math> scalars (the number of entries on or above the main diagonal). Let <math display=inline>\mbox{Skew}_n</math> denote the space of <math display=inline>n \times n</math> skew-symmetric matrices and <math display=inline>\mbox{Sym}_n</math> denote the space of <math display=inline>n \times n</math> symmetric matrices. If <math display=inline>A \in \mbox{Mat}_n</math> then <math display="block">A = \tfrac{1}{2}\left(A - A^\mathsf{T}\right) + \tfrac{1}{2}\left(A + A^\mathsf{T}\right).</math> Notice that <math display=inline>\frac{1}{2}\left(A - A^\textsf{T}\right) \in \mbox{Skew}_n</math> and <math display=inline>\frac{1}{2}\left(A + A^\textsf{T}\right) \in \mbox{Sym}_n.</math> This is true for every [[square matrix]] <math display=inline>A</math> with entries from any [[field (mathematics)|field]] whose [[characteristic (algebra)|characteristic]] is different from 2. Then, since <math display=inline>\mbox{Mat}_n = \mbox{Skew}_n + \mbox{Sym}_n</math> and <math display=inline>\mbox{Skew}_n \cap \mbox{Sym}_n = \{0\},</math> <math display=block>\mbox{Mat}_n = \mbox{Skew}_n \oplus \mbox{Sym}_n,</math> where <math>\oplus</math> denotes the [[Direct sum of modules|direct sum]]. Denote by <math display=inline>\langle \cdot, \cdot \rangle</math> the standard [[inner product]] on <math>\R^n.</math> The real <math>n \times n</math> matrix <math display=inline>A</math> is skew-symmetric if and only if <math display=block>\langle Ax,y \rangle = - \langle x, Ay\rangle \quad \text{ for all } x, y \in \R^n.</math> This is also equivalent to <math display=inline>\langle x, Ax \rangle = 0</math> for all <math>x \in \R^n</math> (one implication being obvious, the other a plain consequence of <math display=inline>\langle x + y, A(x + y)\rangle = 0</math> for all <math>x</math> and <math>y</math>). Since this definition is independent of the choice of [[Basis (linear algebra)|basis]], skew-symmetry is a property that depends only on the [[linear operator]] <math>A</math> and a choice of [[inner product]]. <math>3 \times 3</math> skew symmetric matrices can be used to represent [[cross product]]s as matrix multiplications. Furthermore, if <math>A</math> is a skew-symmetric (or [[Skew-Hermitian matrix|skew-Hermitian]]) matrix, then <math>x^T A x = 0</math> for all <math>x \in \C^n</math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Skew-symmetric matrix
(section)
Add topic