Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Sigmoid function
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Examples == [[File:Gjl-t(x).svg|thumb|320px|right|Some sigmoid functions compared. In the drawing all functions are normalized in such a way that their slope at the origin is 1.]] * [[Logistic function]] <math display="block"> f(x) = \frac{1}{1 + e^{-x}} </math> * [[Hyperbolic tangent]] (shifted and scaled version of the logistic function, above) <math display="block"> f(x) = \tanh x = \frac{e^x-e^{-x}}{e^x+e^{-x}} </math> * [[Arctangent function]] <math display="block"> f(x) = \arctan x </math> * [[Gudermannian function]] <math display="block"> f(x) = \operatorname{gd}(x) = \int_0^x \frac{dt}{\cosh t} = 2\arctan\left(\tanh\left(\frac{x}{2}\right)\right) </math> * [[Error function]] <math display="block"> f(x) = \operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \, dt </math> * [[Generalised logistic function]] <math display="block"> f(x) = \left(1 + e^{-x} \right)^{-\alpha}, \quad \alpha > 0 </math> * [[Smoothstep]] function <math display="block"> f(x) = \begin{cases} {\displaystyle \left( \int_0^1 \left(1 - u^2\right)^N du \right)^{-1} \int_0^x \left( 1 - u^2 \right)^N \ du}, & |x| \le 1 \\ \\ \sgn(x) & |x| \ge 1 \\ \end{cases} \quad N \in \mathbb{Z} \ge 1 </math> * Some [[algebraic function]]s, for example <math display="block"> f(x) = \frac{x}{\sqrt{1+x^2}} </math> * and in a more general form<ref name="Dunning-Kensler-Coudeville-Bailleux_2015" /> <math display="block"> f(x) = \frac{x}{\left(1 + |x|^{k}\right)^{1/k}} </math> * Up to shifts and scaling, many sigmoids are special cases of <math display="block"> f(x) = \varphi(\varphi(x, \beta), \alpha) , </math> where <math display="block"> \varphi(x, \lambda) = \begin{cases} (1 - \lambda x)^{1/\lambda} & \lambda \ne 0 \\e^{-x} & \lambda = 0 \\ \end{cases} </math> is the inverse of the negative [[BoxβCox transformation]], and <math>\alpha < 1</math> and <math>\beta < 1</math> are shape parameters.<ref name="grex" /> * [[Non-analytic_smooth_function#Smooth_transition_functions|Smooth transition function]]<ref>{{Cite web|url=https://www.youtube.com/watch?v=vD5g8aVscUI|title=Smooth Transition Function in One Dimension | Smooth Transition Function Series Part 1|via=www.youtube.com| date =16 August 2022|author=EpsilonDelta|at=13:29/14:04}}</ref> normalized to (β1,1): <!-- <math display="block"> f(x) = \begin{cases} {\displaystyle 2\frac{e^{\frac{1}{u}}}{e^{\frac{1}{u}}+e^{\frac{-1}{1+u}}} - 1}, u=\frac{x+1}{-2}, & |x| < 1 \\ \\ \sgn(x) & |x| \ge 1 \\ \end{cases}</math> AManWithNoPlan simplified below --> <math display="block">\begin{align}f(x) &= \begin{cases} {\displaystyle \frac{2}{1+e^{-2m\frac{x}{1-x^2}}} - 1}, & |x| < 1 \\ \\ \sgn(x) & |x| \ge 1 \\ \end{cases} \\ &= \begin{cases} {\displaystyle \tanh\left(m\frac{x}{1-x^2}\right)}, & |x| < 1 \\ \\ \sgn(x) & |x| \ge 1 \\ \end{cases}\end{align}</math> using the hyperbolic tangent mentioned above. Here, <math>m</math> is a free parameter encoding the slope at <math>x=0</math>, which must be greater than or equal to <math>\sqrt{3}</math> because any smaller value will result in a function with multiple inflection points, which is therefore not a true sigmoid. This function is unusual because it actually attains the limiting values of β1 and 1 within a finite range, meaning that its value is constant at β1 for all <math>x \leq -1</math> and at 1 for all <math>x \geq 1</math>. Nonetheless, it is [[Smoothness|smooth]] (infinitely differentiable, <math>C^\infty</math>) ''everywhere'', including at <math>x = \pm 1</math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Sigmoid function
(section)
Add topic