Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Riesz representation theorem
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Mathematics vs. physics notations and definitions of inner product === The [[Hilbert space]] <math>H</math> has an associated [[inner product]] <math>H \times H \to \mathbb{F}</math> valued in <math>H</math>'s underlying scalar field <math>\mathbb{F}</math> that is linear in one coordinate and antilinear in the other (as specified below). If <math>H</math> is a complex Hilbert space (<math>\mathbb{F} = \Complex</math>), then there is a crucial difference between the notations prevailing in mathematics versus physics, regarding which of the two variables is linear. However, for real Hilbert spaces (<math>\mathbb{F} = \R</math>), the inner product is a [[Symmetric map|symmetric]] map that is linear in each coordinate ([[bilinear map|bilinear]]), so there can be no such confusion. In [[mathematics]], the inner product on a Hilbert space <math>H</math> is often denoted by <math>\left\langle \cdot\,, \cdot \right\rangle</math> or <math>\left\langle \cdot\,, \cdot \right\rangle_H</math> while in [[physics]], the [[braโket notation]] <math>\left\langle \cdot \mid \cdot \right\rangle</math> or <math>\left\langle \cdot \mid \cdot \right\rangle_H</math> is typically used. In this article, these two notations will be related by the equality: <math display="block">\left\langle x, y \right\rangle := \left\langle y \mid x \right\rangle \quad \text{ for all } x, y \in H.</math>These have the following properties:<ol> <li>The map <math>\left\langle \cdot\,, \cdot \right\rangle</math> is ''linear in its first coordinate''; equivalently, the map <math>\left\langle \cdot \mid \cdot \right\rangle</math> is ''linear in its second coordinate''. That is, for fixed <math>y \in H,</math> the map <math>\left\langle \,y\mid \cdot\, \right\rangle = \left\langle \,\cdot\,, y\, \right\rangle : H \to \mathbb{F}</math> with <math display="inline">h \mapsto \left\langle \,y\mid h\, \right\rangle = \left\langle \,h, y\, \right\rangle </math> is a linear functional on <math>H.</math> This linear functional is continuous, so <math>\left\langle \,y\mid\cdot\, \right\rangle = \left\langle \,\cdot, y\, \right\rangle \in H^*.</math> </li> <li>The map <math>\left\langle \cdot\,, \cdot \right\rangle</math> is ''[[Antilinear map|antilinear]] in its {{em|second}} coordinate''; equivalently, the map <math>\left\langle \cdot \mid \cdot \right\rangle</math> is ''antilinear in its {{em|first}} coordinate''. That is, for fixed <math>y \in H,</math> the map <math>\left\langle \,\cdot\mid y\, \right\rangle = \left\langle \,y, \cdot\, \right\rangle : H \to \mathbb{F}</math> with <math display="inline">h \mapsto \left\langle \,h\mid y\, \right\rangle = \left\langle \,y, h\, \right\rangle </math> is an antilinear functional on <math>H.</math> This antilinear functional is continuous, so <math>\left\langle \,\cdot\mid y\, \right\rangle = \left\langle \,y, \cdot\, \right\rangle \in \overline{H}^*.</math> </li> </ol> In computations, one must consistently use either the mathematics notation <math>\left\langle \cdot\,, \cdot \right\rangle</math>, which is (linear, antilinear); or the physics notation <math>\left\langle \cdot \mid \cdot \right\rangle</math>, which is (antilinear | linear).
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Riesz representation theorem
(section)
Add topic