Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Riemann zeta function
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Riemann's functional equation == This zeta function satisfies the [[functional equation]] <math display="block"> \zeta(s) = 2^s \pi^{s-1}\ \sin\left( \frac{\pi s}{2} \right)\ \Gamma(1-s)\ \zeta(1-s)\ ,</math> where {{math|Γ(''s'')}} is the [[gamma function]]. This is an equality of meromorphic functions valid on the whole [[complex plane]]. The equation relates values of the Riemann zeta function at the points {{mvar|s}} and {{math|1 − ''s''}}, in particular relating even positive integers with odd negative integers. Owing to the zeros of the sine function, the functional equation implies that {{math|''ζ''(''s'')}} has a simple zero at each even negative integer {{math|1=''s'' = −2''n''}}, known as the '''[[Triviality (mathematics)|trivial]] zeros''' of {{math|''ζ''(''s'')}}. When {{mvar|s}} is an even positive integer, the product {{nobr|{{math|sin({{sfrac| ''π s'' | 2 }}) Γ(1 − ''s'')}}}} on the right is non-zero because {{math|Γ(1 − ''s'')}} has a simple [[pole (complex analysis)|pole]], which cancels the simple zero of the sine factor. {{Collapse top|title=Proof of Riemann's functional equation}} A proof of the functional equation proceeds as follows: We observe that if <math>\ s > 0\ ,</math> then <math display="block"> \int_0^\infty x^{ \frac{1}{2} s - 1 } e^{-n^2\pi x}\ \operatorname{d} x\ =\ \frac{\ \Gamma\!\left( \frac{s}{2} \right)\ }{\ n^s\ \pi^{\frac{s}{2}}\ } ~.</math> As a result, if <math>\ s > 1\ </math> then <math display="block"> \frac{\ \Gamma\!\left(\frac{s}{2}\right)\ \zeta(s)\ }{\ \pi^{ \frac{s}{2} }\ }\ =\ \sum_{n=1}^\infty\ \int_0^\infty\ x^{{s\over 2}-1}\ e^{-n^2 \pi x}\ \operatorname{d} x\ =\ \int_0^\infty x^{{s\over 2}-1} \sum_{n=1}^\infty e^{-n^2 \pi x}\ \operatorname{d} x\ ,</math> with the inversion of the limiting processes justified by absolute convergence (hence the stricter requirement on <math>s</math>). For convenience, let <math display="block"> \psi(x)\ := \ \sum_{n=1}^\infty\ e^{-n^2 \pi x} </math> which is a special case of the [[theta function]]. Because <math>e^{-n^2 \pi x}</math> and <math>\frac1\sqrt{x} e^{\frac{-n^2 \pi}{x}}</math> are [[Fourier transform#Definition|Fourier transform pairs]],<ref name='Damm-Johnsen'>{{cite book |last=Damm-Johnsenn |first=Håvard |title=Theta functions and their applications |year=2019 |pages=5|url=https://users.ox.ac.uk/~quee4127/theta.pdf}}</ref> then, by the [[Poisson summation formula]], we have <math display="block"> \sum_{n=-\infty}^\infty\ e^{ - n^2 \pi\ x }\ =\ \frac{ 1 }{\ \sqrt{x\ }\ }\ \sum_{n=-\infty}^\infty\ e^{ -\frac{\ n^2 \pi\ }{ x } }\ ,</math> so that <math display="block">\ 2\ \psi(x) + 1\ =\ \frac{ 1 }{\ \sqrt{x\ }\ } \left(\ 2\ \psi\!\left( \frac{ 1 }{ x } \right) + 1\ \right) ~.</math> Hence <math display="block"> \pi^{ -\frac{s}{2} }\ \Gamma\!\left( \frac{s}{2} \right)\ \zeta(s)\ =\ \int_0^1\ x^{ \frac{s}{2} - 1 }\ \psi(x)\ \operatorname{d} x + \int_1^\infty x^{ \frac{s}{2} - 1 } \psi(x)\ \operatorname{d} x ~.</math> The right side is equivalent to <math display="block"> \int_0^1 x^{ \frac{s}{2} - 1 } \left( \frac{ 1 }{\ \sqrt{x\ }\ }\ \psi\!\left( \frac{1}{x} \right) + \frac{ 1 }{\ 2 \sqrt{x\ }\ } - \frac{ 1 }{ 2 }\ \right) \ \operatorname{d} x + \int_1^\infty x^{{s\over 2}-1} \psi(x)\ \operatorname{d} x </math> or <math display="block"> \frac{ 1 }{\ s - 1\ } - \frac{ 1 }{\ s\ } + \int_0^1\ x^{ \frac{s}{2} - \frac{3}{2}}\ \psi\!\left( \frac{ 1 }{\ x\ } \right)\ \operatorname{d} x + \int_1^\infty\ x^{ \frac{s}{2} - 1 }\ \psi(x)\ \operatorname{d} x ~.</math> So <math display="block"> \pi^{ -\frac{ s }{ 2 } }\ \Gamma\!\left( \frac{\ s\ }{ 2 } \right)\ \zeta(s)\ =\ \frac{ 1 }{\ s ( s - 1 )\ } + \int_1^\infty\ \left( x^{ -\frac{ s }{ 2 } - \frac{ 1 }{ 2 } } + x^{ \frac{ s }{ 2 } - 1 } \right)\ \psi(x)\ \operatorname{d} x </math> which is convergent for all {{mvar|s}}, because <math>\psi(x)\to0</math> quicker than any power of {{mvar|x}} for <math>x>1</math>, so the integral converges. As the RHS remains the same if {{mvar|s}} is replaced by {{nobr|{{math| 1 − ''s''}} .}}, <math display="block"> \frac{\ \Gamma\!\left(\ \frac{s}{2}\ \right)\ \zeta\!\left(\ s\ \right)\ }{\ \pi^{ \frac{s}{2}\ }\ }\ =\ \frac{\ \Gamma\!\left(\ \frac{1}{2} - \frac{s}{2}\ \right)\ \zeta\!\left(\ 1 - s\ \right)\ }{\ \pi^{ \frac{1}{2} - \frac{s}{2} }\ } </math> which is the functional equation attributed to [[Bernhard Riemann]].<ref>{{cite book |first=E.C. |last=Titchmarsh |year=1986 |title=The Theory of the Riemann Zeta Function |edition=2nd |publisher=Oxford Science Publications |place=[[Oxford]], UK |isbn=0-19-853369-1 |pages=21–22 }}</ref> The functional equation above can be obtained using both the [[reflection formula]] and the [[Multiplication theorem#Gamma function–Legendre formula|duplication formula]]. First collect terms of <math>\pi</math>: <math display="block">\Gamma\left(\frac{s}{2}\right)\zeta\left(s\right) = \Gamma\left(\frac{1}{2} - \frac{s}{2}\right)\zeta\left(1 - s\right)\pi^{s-\frac{1}{2}}</math> Then multiply both sides by <math>\Gamma\left(1-\frac s2\right)</math> and use the reflection formula: <math display="block">\Gamma\left(1-\frac s2\right)\Gamma\left(\frac{s}{2}\right)\zeta\left(s\right) = \Gamma\left(1-\frac s2\right)\Gamma\left(\frac{1}{2} - \frac{s}{2}\right)\zeta\left(1 - s\right)\pi^{s-\frac{1}{2}}</math> <math display="block">\zeta\left(s\right) = \sin\left(\frac{\pi s}2\right)\Gamma\left(1-\frac s2\right)\Gamma\left(\frac{1}{2} - \frac{s}{2}\right)\zeta\left(1 - s\right)\pi^{s-\frac{3}{2}}</math> Use the duplication formula with <math>z=\frac{1}{2} - \frac{s}{2}</math> <math display="block">\zeta\left(s\right) = \sin\left(\frac{\pi s}2\right)2^{1-1+s}\sqrt{\pi}\Gamma\left(1-s\right)\zeta\left(1 - s\right)\pi^{s-\frac{3}{2}}</math> so that <math display="block">\zeta\left(s\right) = \sin\left(\frac{\pi s}2\right)2^s\Gamma\left(1-s\right)\zeta\left(1 - s\right)\pi^{s-1}</math> {{Collapse bottom}} The functional equation was established by Riemann in his 1859 paper "[[On the Number of Primes Less Than a Given Magnitude]]" and used to construct the analytic continuation in the first place.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Riemann zeta function
(section)
Add topic