Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Rank (linear algebra)
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Computing the rank of a matrix== === Rank from row echelon forms === {{main|Gaussian elimination}} A common approach to finding the rank of a matrix is to reduce it to a simpler form, generally [[row echelon form]], by [[elementary row operations]]. Row operations do not change the row space (hence do not change the row rank), and, being invertible, map the column space to an isomorphic space (hence do not change the column rank). Once in row echelon form, the rank is clearly the same for both row rank and column rank, and equals the number of [[Pivot_element|pivots]] (or basic columns) and also the number of non-zero rows. For example, the matrix {{mvar|A}} given by <math display="block">A=\begin{bmatrix}1&2&1\\-2&-3&1\\3&5&0\end{bmatrix}</math> can be put in reduced row-echelon form by using the following elementary row operations: <math display="block">\begin{align} \begin{bmatrix}1&2&1\\-2&-3&1\\3&5&0\end{bmatrix} &\xrightarrow{2R_1 + R_2 \to R_2} \begin{bmatrix}1&2&1\\0&1&3\\3&5&0\end{bmatrix} \xrightarrow{-3R_1 + R_3 \to R_3} \begin{bmatrix}1&2&1\\0&1&3\\0&-1&-3\end{bmatrix} \\ &\xrightarrow{R_2 + R_3 \to R_3} \,\, \begin{bmatrix}1&2&1\\0&1&3\\0&0&0\end{bmatrix} \xrightarrow{-2R_2 + R_1 \to R_1} \begin{bmatrix}1&0&-5\\0&1&3\\0&0&0\end{bmatrix}~. \end{align}</math> The final matrix (in reduced row echelon form) has two non-zero rows and thus the rank of matrix {{mvar|A}} is 2. === Computation === When applied to [[floating point]] computations on computers, basic Gaussian elimination ([[LU decomposition]]) can be unreliable, and a rank-revealing decomposition should be used instead. An effective alternative is the [[singular value decomposition]] (SVD), but there are other less computationally expensive choices, such as [[QR decomposition]] with pivoting (so-called [[rank-revealing QR factorization]]), which are still more numerically robust than Gaussian elimination. Numerical determination of rank requires a criterion for deciding when a value, such as a singular value from the SVD, should be treated as zero, a practical choice which depends on both the matrix and the application.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Rank (linear algebra)
(section)
Add topic