Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Quadratic reciprocity
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Patterns among quadratic residues=== Let ''p'' be an odd prime. A number modulo ''p'' is a [[quadratic residue]] whenever it is congruent to a square (mod ''p''); otherwise it is a quadratic non-residue. ("Quadratic" can be dropped if it is clear from the context.) Here we exclude zero as a special case. Then as a consequence of the fact that the multiplicative group of a [[finite field]] of order ''p'' is cyclic of order ''p-1'', the following statements hold: *There are an equal number of quadratic residues and non-residues; and *The product of two quadratic residues is a residue, the product of a residue and a non-residue is a non-residue, and the product of two non-residues is a residue. For the avoidance of doubt, these statements do ''not'' hold if the modulus is not prime. For example, there are only 3 quadratic residues (1, 4 and 9) in the multiplicative group modulo 15. Moreover, although 7 and 8 are quadratic non-residues, their product 7x8 = 11 is also a quadratic non-residue, in contrast to the prime case. Quadratic residues appear as entries in the following table, indexed by the row number as modulus and column number as root: {| class="wikitable" style="text-align:right;" cellpadding="2" |+ Squares mod primes |- ! ''n'' | 1||2|| 3|| 4||5|| 6|| 7|| 8 ||9 ||10|| 11|| 12|| 13|| 14 ||15|| 16|| 17|| 18 ||19|| 20|| 21|| 22|| 23|| 24 ||25 |- ! ''n''<sup>2</sup> |1 |4 |9 |16 |25 |36 |49 |64 |81 |100|| 121|| 144|| 169|| 196 ||225|| 256|| 289|| 324 ||361 || 400|| 441|| 484|| 529|| 576 ||625 |- ! mod 3 | 1 || 1 || 0 | 1 || 1 || 0 | 1 || 1 || 0 | 1 || 1 || 0 | 1 || 1 || 0 | 1 || 1 || 0 | 1 || 1 || 0 | 1 || 1 || 0 | 1 |- ! mod 5 | 1 || 4 || 4 || 1 || 0 | 1 || 4 || 4 || 1 || 0 | 1 || 4 || 4 || 1 || 0 | 1 || 4 || 4 || 1 || 0 | 1 || 4 || 4 || 1 || 0 |- ! mod 7 | 1 || 4 || 2 || 2 || 4 || 1 || 0 | 1 || 4 || 2 || 2 || 4 || 1 || 0 | 1 || 4 || 2 || 2 || 4 || 1 || 0 | 1 || 4 || 2 || 2 |- ! mod 11 | 1 || 4 || 9 || 5 || 3 || 3 || 5 || 9 || 4 || 1 || 0 | 1 || 4 || 9 || 5 || 3 || 3 || 5 || 9 || 4 || 1 || 0 | 1 || 4 || 9 |- ! mod 13 | 1 || 4 || 9 || 3 || 12 || 10 || 10 || 12 || 3 || 9 || 4 || 1 || 0 | 1 || 4 || 9 || 3 || 12 || 10 || 10 || 12 || 3 || 9 || 4 || 1 |- ! mod 17 | 1 || 4 || 9 || 16 || 8 || 2 || 15 || 13 || 13 || 15 || 2 || 8 || 16 || 9 || 4 || 1 || 0 | 1 || 4 || 9 || 16 || 8 || 2 || 15 || 13 |- ! mod 19 | 1 || 4 || 9 || 16 || 6 || 17 || 11 || 7 || 5 || 5 || 7 || 11 || 17 || 6 || 16 || 9 || 4 || 1 || 0 | 1 || 4 || 9 || 16 || 6 || 17 |- ! mod 23 | 1 || 4 || 9 || 16 || 2 || 13 || 3 || 18 || 12 || 8 || 6 || 6 || 8 || 12 ||18 || 3 || 13 || 2 || 16 || 9 || 4 || 1 || 0 | 1 || 4 |- ! mod 29 | 1 ||4|| 9|| 16|| 25|| 7|| 20|| 6 ||23 ||13|| 5|| 28|| 24|| 22 ||22|| 24|| 28|| 5 ||13 || 23|| 6|| 20|| 7|| 25 ||16 |- ! mod 31 | 1 ||4|| 9|| 16||25|| 5|| 18|| 2 ||19 ||7|| 28|| 20|| 14|| 10 ||8|| 8|| 10|| 14 ||20 || 28|| 7|| 19|| 2|| 18 ||5 |- ! mod 37 | 1 ||4|| 9|| 16||25|| 36|| 12|| 27 ||7 ||26||10|| 33|| 21|| 11 ||3|| 34|| 30|| 28 ||28 || 30|| 34|| 3|| 11|| 21 ||33 |- ! mod 41 | 1 ||4|| 9|| 16||25|| 36|| 8|| 23 ||40 ||18||39||21|| 5|| 32 ||20|| 10|| 2|| 37 ||33 || 31|| 31|| 33|| 37|| 2 ||10 |- ! mod 43 | 1 ||4|| 9|| 16||25|| 36|| 6|| 21 ||38 ||14|| 35|| 15|| 40|| 24 ||10|| 41|| 31|| 23 ||17 || 13|| 11 || 11|| 13|| 17 ||23 |- ! mod 47 | 1 ||4|| 9|| 16||25|| 36|| 2|| 17 ||34 ||6|| 27|| 3|| 28|| 8 ||37||21||7||42||32||24||18|| 14|| 12 || 12 ||14 |} This table is complete for odd primes less than 50. To check whether a number ''m'' is a quadratic residue mod one of these primes ''p'', find ''a'' β‘ ''m'' (mod ''p'') and 0 β€ ''a'' < ''p''. If ''a'' is in row ''p'', then ''m'' is a residue (mod ''p''); if ''a'' is not in row ''p'' of the table, then ''m'' is a nonresidue (mod ''p''). The quadratic reciprocity law is the statement that certain patterns found in the table are true in general.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Quadratic reciprocity
(section)
Add topic