Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Pythagorean comma
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Circle of fifths and enharmonic change== {{Image frame|width=250 | content = <score raw="1">p = \markup { \lower #1 "+" } pps = \markup { \concat { \lower #1 "++" \sharp }} ppps = \markup { \concat { \lower #1 "+++" \sharp }} \new PianoStaff \with { \override Accidental.stencil = #ly:text-interface::print \override StaffGrouper.staff-staff-spacing.basic-distance = #15 \omit TimeSignature } << \new Staff \with{ \magnifyStaff #3/2 } {\relative c' \tweak AccidentalPlacement.positioning-done ##f <\tweak Accidental.text \pps \tweak Accidental.X-offset #-10.75 fis \tweak Accidental.text \pps \tweak Accidental.X-offset #-6 cis' \tweak Accidental.text \pps \tweak Accidental.X-offset #-10.75 gis' \tweak Accidental.text \pps \tweak Accidental.X-offset #-6 dis' \tweak Accidental.text \ppps \tweak Accidental.X-offset #-14.75 ais' \tweak Accidental.text \ppps \tweak Accidental.X-offset #-8 eis'>1 } \new Staff \with{ \magnifyStaff #3/2 } {\relative c,, {\clef bass <c g' d' \tweak Accidental.text \p ais' \tweak Accidental.text \p eis' \tweak Accidental.text \p bis'>1 } } >> \paper {tagline=##f} </score> | caption = Pythagorean comma as twelve justly tuned perfect fifths in Ben Johnston notation[[File:Just perfect fifth on C.mid]] }} The Pythagorean comma can also be thought of as the discrepancy between 12 [[just intonation|justly tuned]] [[perfect fifth]]s (ratio 3:2) and seven octaves (ratio 2:1): :<math>\frac{\hbox{twelve fifths}}{\hbox{seven octaves}} =\left(\tfrac32\right)^{12} \!\!\Big/\, 2^{7} = \frac{3^{12}}{2^{19}} = \frac{531441}{524288} = 1.0136432647705078125 \!</math> {| |----- | valign="top" | {| class="wikitable" |+Ascending by perfect fifths |----- ! Note ! [[Perfect fifth|Fifth]] ! Frequency ratio ! Decimal ratio |- ! C | align="center"| 0 || align="center"| 1 ''':''' 1 || align="center"| 1 |- ! G | align="center"| 1 || align="center"| 3 ''':''' 2 || align="center"| 1.5 |- ! D | align="center"| 2 || align="center"| 9 ''':''' 4 || align="center"| 2.25 |- ! A | align="center"| 3 || align="center"| 27 ''':''' 8 || align="center"| 3.375 |- ! E | align="center"| 4 || align="center"| 81 ''':''' 16 || align="center"| 5.0625 |- ! B | align="center"| 5 || align="center"| 243 ''':''' 32 || align="center"| 7.59375 |- ! F{{music|sharp}} | align="center"| 6 || align="center"| 729 ''':''' 64 || align="center"| 11.390625 |- ! C{{music|sharp}} | align="center"| 7 || align="center"| 2187 ''':''' 128 || align="center"| 17.0859375 |- ! G{{music|sharp}} | align="center"| 8 || align="center"| 6561 ''':''' 256 || align="center"| 25.62890625 |- ! D{{music|sharp}} | align="center"| 9 || align="center"| 19683 ''':''' 512 || align="center"| 38.443359375 |- ! A{{music|sharp}} | align="center"|10 || align="center"| 59049 ''':''' 1024 || align="center"| 57.6650390625 |- ! E{{music|sharp}} | align="center"|11 || align="center"| 177147 ''':''' 2048 || align="center"| 86.49755859375 |- ! '''B{{music|sharp}}''' (≈ C) | align="center"|12 || align="center"|531441 ''':''' 4096 || align="center"| 129.746337890625 |} | valign="top" | {| class="wikitable" |+Ascending by octaves |----- ! Note ! [[Octave]] ! Frequency ratio |----- | align="center"|'''C''' || align="center"|0 || align="center"|1 ''':''' 1 |- | align="center"|'''C''' || align="center"|1 || align="center"|2 ''':''' 1 |- | align="center"|'''C''' || align="center"|2 || align="center"|4 ''':''' 1 |----- | align="center"|'''C''' || align="center"|3 || align="center"|8 ''':''' 1 |----- | align="center"|'''C''' || align="center"|4 || align="center"|16 ''':''' 1 |----- | align="center"|'''C''' || align="center"|5 || align="center"|32 ''':''' 1 |----- | align="center"|'''C''' || align="center"|6 || align="center"|64 ''':''' 1 |----- | align="center"|'''C''' || align="center"|7 || align="center"|128 ''':''' 1 |} |} In the following table of [[musical scale]]s in the [[circle of fifths]], the Pythagorean comma is visible as the small interval between, e.g., F{{music|sharp}} and G{{music|flat}}. Going around the circle of fifths with just intervals results in a [[comma pump]] by the Pythagorean comma. The 6{{music|flat}} and the 6{{music|sharp}} scales{{efn|group=lower-roman|1=The 7{{music|flat}} and 5{{music|sharp}}, respectively 5{{music|flat}} and 7{{music|sharp}} scales differ in the same way by one Pythagorean comma. Scales with seven accidentals are seldom used,<ref>[http://www.cisdur.de/e_index.html "Complete Overview of Compositions with Seven Accidentals"], Ulrich Reinhardt</ref> because the enharmonic scales with five accidentals are treated as equivalent.}} are not identical—even though they are on the [[piano keyboard]]—but the {{music|flat}} scales are one Pythagorean comma lower. Disregarding this difference leads to [[enharmonic|enharmonic change]]. [[File:Circle of fifths unrolled, pythagorean comma.svg|1000px]] {{notelist|group=lower-roman}} {{clear}} This interval has serious implications for the various [[musical tuning|tuning]] schemes of the [[chromatic scale]], because in Western music, [[circle of fifths|12 perfect fifths]] and seven octaves are treated as the same interval. [[Equal temperament]], today the most common tuning system in the West, reconciled this by flattening each fifth by a twelfth of a Pythagorean comma (approximately 2 cents), thus producing perfect octaves. Another way to express this is that the just fifth has a frequency ratio (compared to the tonic) of 3:2 or 1.5 to 1, whereas the seventh semitone (based on 12 equal logarithmic divisions of an octave) is the seventh power of the [[twelfth root of two]] or 1.4983... to 1, which is not quite the same (a difference of about 0.1%). Take the just fifth to the 12th power, then subtract seven octaves, and you get the Pythagorean comma (about a 1.4% difference).
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Pythagorean comma
(section)
Add topic