Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Modular arithmetic
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Basic properties == {{anchor|Properties}} The congruence relation satisfies all the conditions of an [[equivalence relation]]: * Reflexivity: {{math|''a'' ≡ ''a'' (mod ''m'')}} * Symmetry: {{math|''a'' ≡ ''b'' (mod ''m'')}} if {{math|''b'' ≡ ''a'' (mod ''m'')}}. * Transitivity: If {{math|''a'' ≡ ''b'' (mod ''m'')}} and {{math|''b'' ≡ ''c'' (mod ''m'')}}, then {{math|''a'' ≡ ''c'' (mod ''m'')}} If {{math|''a''<sub>1</sub> ≡ ''b''<sub>1</sub> (mod ''m'')}} and {{math|''a''<sub>2</sub> ≡ ''b''<sub>2</sub> (mod ''m'')}}, or if {{math|''a'' ≡ ''b'' (mod ''m'')}}, then:<ref>{{cite book |author1=Sandor Lehoczky |author2=Richard Rusczky |editor=David Patrick |title=the Art of Problem Solving |year=2006 |isbn=0977304566 |pages=44 |edition=7 |language=en| volume=1|publisher=AoPS Incorporated }}</ref> * {{math|''a'' + ''k'' ≡ ''b'' + ''k'' (mod ''m'')}} for any integer {{math|''k''}} (compatibility with translation) * {{math|''k a'' ≡ ''k b'' (mod ''m'')}} for any integer {{math|''k''}} (compatibility with scaling) * {{math|''k a'' ≡ ''k b'' (mod ''k m'')}} for any integer {{math|''k''}} * {{math|''a''<sub>1</sub> + ''a''<sub>2</sub> ≡ ''b''<sub>1</sub> + ''b''<sub>2</sub> (mod ''m'')}} (compatibility with addition) * {{math|''a''<sub>1</sub> − ''a''<sub>2</sub> ≡ ''b''<sub>1</sub> − ''b''<sub>2</sub> (mod ''m'')}} (compatibility with subtraction) * {{math|''a''<sub>1</sub> ''a''<sub>2</sub> ≡ ''b''<sub>1</sub> ''b''<sub>2</sub> (mod ''m'')}} (compatibility with multiplication) * {{math|''a''<sup>''k''</sup> ≡ ''b''<sup>''k''</sup> (mod ''m'')}} for any non-negative integer {{math|''k''}} (compatibility with exponentiation) * {{math|''p''(''a'') ≡ ''p''(''b'') (mod ''m'')}}, for any [[polynomial]] {{math|''p''(''x'')}} with integer coefficients (compatibility with polynomial evaluation) If {{math|''a'' ≡ ''b'' (mod ''m'')}}, then it is generally false that {{math|''k<sup>a</sup>'' ≡ ''k<sup>b</sup>'' (mod ''m'')}}. However, the following is true: * If {{math|''c'' ≡ ''d'' (mod ''φ''(''m'')),}} where {{math|''φ''}} is [[Euler's totient function]], then {{math|''a''<sup>''c''</sup> ≡ ''a''<sup>''d''</sup> (mod ''m'')}}—provided that {{math|''a''}} is [[coprime]] with {{math|''m''}}. For cancellation of common terms, we have the following rules: * If {{math|''a'' + ''k'' ≡ ''b'' + ''k'' (mod ''m'')}}, where {{math|''k''}} is any integer, then {{math|''a'' ≡ ''b'' (mod ''m'')}}. * If {{math|''k a'' ≡ ''k b'' (mod ''m'')}} and {{math|''k''}} is coprime with {{math|''m''}}, then {{math|''a'' ≡ ''b'' (mod ''m'')}}. * If {{math|''k a'' ≡ ''k b'' (mod ''k m'')}} and {{math|''k'' ≠ 0}}, then {{math|''a'' ≡ ''b'' (mod ''m'')}}. The last rule can be used to move modular arithmetic into division. If {{math|''b''}} divides {{math|''a''}}, then {{math|1=(''a''/''b'') mod ''m'' = (''a'' mod ''b m'') / ''b''}}. The [[modular multiplicative inverse]] is defined by the following rules: * Existence: There exists an integer denoted {{math|''a''<sup>−1</sup>}} such that {{math|''aa''<sup>−1</sup> ≡ 1 (mod ''m'')}} if and only if {{math|''a''}} is coprime with {{math|''m''}}. This integer {{math|''a''<sup>−1</sup>}} is called a ''modular multiplicative inverse'' of {{mvar|a}} modulo {{math|''m''}}. * If {{math|''a'' ≡ ''b'' (mod ''m'')}} and {{math|''a''<sup>−1</sup>}} exists, then {{math|''a''<sup>−1</sup> ≡ ''b''<sup>−1</sup> (mod ''m'')}} (compatibility with multiplicative inverse, and, if {{math|1=''a'' = ''b''}}, uniqueness modulo {{math|''m''}}). * If {{math|''ax'' ≡ ''b'' (mod ''m'')}} and {{math|''a''}} is coprime to {{math|''m''}}, then the solution to this linear congruence is given by {{math|''x'' ≡ ''a''<sup>−1</sup>''b'' (mod ''m'')}}. The multiplicative inverse {{math|''x'' ≡ ''a''<sup>−1</sup> (mod ''m'')}} may be efficiently computed by solving [[Bézout's identity|Bézout's equation]] {{math|1=''a x'' + ''m y'' = 1}} for {{math|''x''}}, {{math|''y''}}, by using the [[Extended Euclidean algorithm]]. In particular, if {{math|''p''}} is a prime number, then {{math|''a''}} is coprime with {{math|''p''}} for every {{math|''a''}} such that {{math|0 < ''a'' < ''p''}}; thus a multiplicative inverse exists for all {{math|''a''}} that is not congruent to zero modulo {{math|''p''}}.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Modular arithmetic
(section)
Add topic