Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
List of small groups
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== List of small abelian groups == The finite abelian groups are either cyclic groups, or direct products thereof; see [[Abelian group]]. The numbers of nonisomorphic abelian groups of orders ''n'' = 1, 2, ... are : 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, ... {{OEIS|id=A000688}} For labeled abelian groups, see {{oeis|A034382}}. {| class="wikitable" |+ List of all abelian groups up to order 31 |- ! Order ! Id.{{efn|name=id|Identifier when groups are numbered by order, ''o'', then by index, ''i'', from the small groups library, starting at 1.}} ! G<sub>''o''</sub><sup>''i''</sup> ! Group ! Non-trivial proper subgroups{{r|Dockchitser}} ! [[Cycle graph (algebra)|Cycle<br />graph]] ! Properties |- ! 1 ! 1 ! G<sub>1</sub><sup>1</sup> | Z<sub>1</sub> = S<sub>1</sub> = A<sub>2</sub> | β | align=center|[[Image:GroupDiagramMiniC1.svg|40px]] | [[Trivial group|Trivial]]. Cyclic. Alternating. Symmetric. [[Elementary abelian group|Elementary]]. |- ! 2 ! 2 ! G<sub>2</sub><sup>1</sup> | Z<sub>2</sub> = S<sub>2</sub> = D<sub>2</sub> | β | align=center|[[Image:GroupDiagramMiniC2.svg|40px]] | Simple. Symmetric. Cyclic. Elementary. (Smallest non-trivial group.) |- ! 3 ! 3 ! G<sub>3</sub><sup>1</sup> | Z<sub>3</sub> = A<sub>3</sub> | β | align=center|[[Image:GroupDiagramMiniC3.svg|40px]] | Simple. Alternating. Cyclic. Elementary. |- ! rowspan="2" | 4 ! 4 ! G<sub>4</sub><sup>1</sup> | Z<sub>4</sub> = Q<sub>4</sub> | Z<sub>2</sub> | align=center|[[Image:GroupDiagramMiniC4.svg|40px]] | Cyclic. |- ! 5 ! G<sub>4</sub><sup>2</sup> | Z<sub>2</sub><sup>2</sup> = K<sub>4</sub> = D<sub>4</sub> | Z<sub>2</sub> (3) | align=center|[[Image:GroupDiagramMiniD4.svg|40px]] | Elementary. [[Direct product of groups|Product]]. ([[Klein four-group]]. The smallest non-cyclic group.) |- ! 5 ! 6 ! G<sub>5</sub><sup>1</sup> | Z<sub>5</sub> | β | align=center|[[Image:GroupDiagramMiniC5.svg|40px]] | Simple. Cyclic. Elementary. |- ! 6 ! 8 ! G<sub>6</sub><sup>2</sup> | Z<sub>6</sub> = Z<sub>3</sub> Γ Z<sub>2</sub><ref>See a worked [[Isomorphism#Integers modulo 6|example showing the isomorphism Z<sub>6</sub> = Z<sub>3</sub> Γ Z<sub>2</sub>]].</ref> | Z<sub>3</sub>, Z<sub>2</sub> | align=center|[[Image:GroupDiagramMiniC6.svg|40px]] | Cyclic. Product. |- ! 7 ! 9 ! G<sub>7</sub><sup>1</sup> | Z<sub>7</sub> | β | align=center|[[Image:GroupDiagramMiniC7.svg|40px]] | Simple. Cyclic. Elementary. |- ! rowspan="3" | 8 ! 10 ! G<sub name=g8>8</sub><sup>1</sup> | Z<sub>8</sub> | Z<sub>4</sub>, Z<sub>2</sub> | align=center|[[Image:GroupDiagramMiniC8.svg|40px]] | Cyclic. |- ! 11 ! G<sub>8</sub><sup>2</sup> | Z<sub>4</sub> Γ Z<sub>2</sub> | Z<sub>2</sub><sup>2</sup>, Z<sub>4</sub> (2), Z<sub>2</sub> (3) | align=center|[[Image:GroupDiagramMiniC2C4.svg|40px]] | Product. |- ! 14 ! G<sub>8</sub><sup>5</sup> | Z<sub>2</sub><sup>3</sup> | Z<sub>2</sub><sup>2</sup> (7), Z<sub>2</sub> (7) | align=center|[[Image:GroupDiagramMiniC2x3.svg|40px]] | Product. Elementary. (The non-identity elements correspond to the points in the [[Fano plane]], the {{nowrap|Z<sub>2</sub> Γ Z<sub>2</sub>}} subgroups to the lines.) |- ! rowspan="2" | 9 ! 15 ! G<sub>9</sub><sup>1</sup> | Z<sub>9</sub> | Z<sub>3</sub> | align=center|[[Image:GroupDiagramMiniC9.svg|40px]] | Cyclic. |- ! 16 ! G<sub>9</sub><sup>2</sup> | Z<sub>3</sub><sup>2</sup> | Z<sub>3</sub> (4) |align=center| [[Image:GroupDiagramMiniC3x2.svg|40px]] | Elementary. Product. |- ! 10 ! 18 ! G<sub>10</sub><sup>2</sup> | Z<sub>10</sub> = Z<sub>5</sub> Γ Z<sub>2</sub> | Z<sub>5</sub>, Z<sub>2</sub> | align=center|[[Image:GroupDiagramMiniC10.svg|40px]] | Cyclic. Product. |- ! 11 ! 19 ! G<sub>11</sub><sup>1</sup> | Z<sub>11</sub> | β | align=center|[[Image:GroupDiagramMiniC11.svg|40px]] | Simple. Cyclic. Elementary. |- ! rowspan="2" | 12 ! 21 ! G<sub>12</sub><sup>2</sup> | Z<sub>12</sub> = Z<sub>4</sub> Γ Z<sub>3</sub> | Z<sub>6</sub>, Z<sub>4</sub>, Z<sub>3</sub>, Z<sub>2</sub> | align=center|[[Image:GroupDiagramMiniC12.svg|40px]] | Cyclic. Product. |- ! 24 ! G<sub>12</sub><sup>5</sup> | Z<sub>6</sub> Γ Z<sub>2</sub> = Z<sub>3</sub> Γ Z<sub>2</sub><sup>2</sup> | Z<sub>6</sub> (3), Z<sub>3</sub>, Z<sub>2</sub> (3), Z<sub>2</sub><sup>2</sup> | align=center|[[Image:GroupDiagramMiniC2C6.svg|40px]] | Product. |- ! 13 ! 25 ! G<sub>13</sub><sup>1</sup> | Z<sub>13</sub> | β | align=center|[[Image:GroupDiagramMiniC13.svg|40px]] | Simple. Cyclic. Elementary. |- ! 14 ! 27 ! G<sub>14</sub><sup>2</sup> | Z<sub>14</sub> = Z<sub>7</sub> Γ Z<sub>2</sub> | Z<sub>7</sub>, Z<sub>2</sub> |align=center| [[Image:GroupDiagramMiniC14.svg|40px]] | Cyclic. Product. |- ! 15 ! 28 ! G<sub>15</sub><sup>1</sup> | Z<sub>15</sub> = Z<sub>5</sub> Γ Z<sub>3</sub> | Z<sub>5</sub>, Z<sub>3</sub> | align=center|[[Image:GroupDiagramMiniC15.svg|40px]] | Cyclic. Product. |- ! rowspan="5" | 16 ! 29 ! G<sub>16</sub><sup>1</sup> | Z<sub>16</sub> | Z<sub>8</sub>, Z<sub>4</sub>, Z<sub>2</sub> | align=center|[[Image:GroupDiagramMiniC16.svg|40px]] | Cyclic. |- ! 30 ! G<sub>16</sub><sup>2</sup> | Z<sub>4</sub><sup>2</sup> | Z<sub>2</sub> (3), Z<sub>4</sub> (6), Z<sub>2</sub><sup>2</sup>, {{nowrap|Z<sub>4</sub> Γ Z<sub>2</sub>}} (3)</td> | align=center|[[Image:GroupDiagramMiniC4x2.svg|40px]] | Product. |- ! 33 ! G<sub>16</sub><sup>5</sup> | Z<sub>8</sub> Γ Z<sub>2</sub> | Z<sub>2</sub> (3), Z<sub>4</sub> (2), Z<sub>2</sub><sup>2</sup>, Z<sub>8</sub> (2), {{nowrap|Z<sub>4</sub> Γ Z<sub>2</sub>}} | align=center|[[File:GroupDiagramC2C8.svg|40px]] | Product. |- ! 38 ! G<sub>16</sub><sup>10</sup> | Z<sub>4</sub> Γ Z<sub>2</sub><sup>2</sup> | Z<sub>2</sub> (7), Z<sub>4</sub> (4), Z<sub>2</sub><sup>2</sup> (7), Z<sub>2</sub><sup>3</sup>, {{nowrap|Z<sub>4</sub> Γ Z<sub>2</sub>}} (6) | align=center|[[Image:GroupDiagramMiniC2x2C4.svg|40px]] | Product. |- ! 42 ! G<sub>16</sub><sup>14</sup> | Z<sub>2</sub><sup>4</sup> = K<sub>4</sub><sup>2</sup> | Z<sub>2</sub> (15), Z<sub>2</sub><sup>2</sup> (35), Z<sub>2</sub><sup>3</sup> (15)</td> | align=center|[[Image:GroupDiagramMiniC2x4.svg|40px]] | Product. Elementary. |- ! 17 ! 43 ! G<sub>17</sub><sup>1</sup> | Z<sub>17</sub> | β | align=center|[[Image:GroupDiagramMiniC17.svg|40px]] | Simple. Cyclic. Elementary. |- ! rowspan="2" | 18 ! 45 ! G<sub>18</sub><sup>2</sup> | Z<sub>18</sub> = Z<sub>9</sub> Γ Z<sub>2</sub> | Z<sub>9</sub>, Z<sub>6</sub>, Z<sub>3</sub>, Z<sub>2</sub> | align=center|[[Image:GroupDiagramMiniC18.svg|40px]] | Cyclic. Product. |- ! 48 ! G<sub>18</sub><sup>5</sup> | Z<sub>6</sub> Γ Z<sub>3</sub> = Z<sub>3</sub><sup>2</sup> Γ Z<sub>2</sub> || Z<sub>2</sub>, Z<sub>3</sub> (4), Z<sub>6</sub> (4), Z<sub>3</sub><sup>2</sup> ||[[File:GroupDiagramMiniC3C6.png|50px]] || Product. |- ! 19 ! 49 ! G<sub>19</sub><sup>1</sup> | Z<sub>19</sub> | β | align=center|[[Image:GroupDiagramMiniC19.svg|40px]] | Simple. Cyclic. Elementary. |- ! rowspan="2" | 20 ! 51 ! G<sub>20</sub><sup>2</sup> | Z<sub>20</sub> = Z<sub>5</sub> Γ Z<sub>4</sub> | Z<sub>10</sub>, Z<sub>5</sub>, Z<sub>4</sub>, Z<sub>2</sub> | align=center|[[Image:GroupDiagramMiniC20.svg|40px]] | Cyclic. Product. |- ! 54 ! G<sub>20</sub><sup>5</sup> | Z<sub>10</sub> Γ Z<sub>2</sub> = Z<sub>5</sub> Γ Z<sub>2</sub><sup>2</sup> ||Z<sub>2</sub> (3), K<sub>4</sub>, Z<sub>5</sub>, Z<sub>10</sub> (3) | align=center|[[File:GroupDiagramMiniC2C10.png|40px]] | Product. |- ! 21 ! 56 ! G<sub>21</sub><sup>2</sup> | Z<sub>21</sub> = Z<sub>7</sub> Γ Z<sub>3</sub> | Z<sub>7</sub>, Z<sub>3</sub> | align=center|[[Image:GroupDiagramMiniC21.svg|40px]] | Cyclic. Product. |- ! 22 ! 58 ! G<sub>22</sub><sup>2</sup> | Z<sub>22</sub> = Z<sub>11</sub> Γ Z<sub>2</sub> | Z<sub>11</sub>, Z<sub>2</sub> | align=center|[[Image:GroupDiagramMiniC22.svg|40px]] | Cyclic. Product. |- ! 23 ! 59 ! G<sub>23</sub><sup>1</sup> | Z<sub>23</sub> | β | align=center|[[Image:GroupDiagramMiniC23.svg|40px]] | Simple. Cyclic. Elementary. |- ! rowspan=3|24 ! 61 ! G<sub>24</sub><sup>2</sup> | Z<sub>24</sub> = Z<sub>8</sub> Γ Z<sub>3</sub> | Z<sub>12</sub>, Z<sub>8</sub>, Z<sub>6</sub>, Z<sub>4</sub>, Z<sub>3</sub>, Z<sub>2</sub> | align=center|[[Image:GroupDiagramMiniC24.svg|40px]] | Cyclic. Product. |- ! 68 ! G<sub>24</sub><sup>9</sup> | Z<sub>12</sub> Γ Z<sub>2</sub> = Z<sub>6</sub> Γ Z<sub>4</sub> = <br />Z<sub>4</sub> Γ Z<sub>3</sub> Γ Z<sub>2</sub> | Z<sub>12</sub>, Z<sub>6</sub>, Z<sub>4</sub>, Z<sub>3</sub>, Z<sub>2</sub> | | Product. |- ! 74 ! G<sub>24</sub><sup>15</sup> | Z<sub>6</sub> Γ Z<sub>2</sub><sup>2</sup> = Z<sub>3</sub> Γ Z<sub>2</sub><sup>3</sup> | Z<sub>6</sub>, Z<sub>3</sub>, Z<sub>2</sub> | | Product. |- ! rowspan=2|25 ! 75 ! G<sub>25</sub><sup>1</sup> | Z<sub>25</sub> | Z<sub>5</sub> | | Cyclic. |- ! 76 ! G<sub>25</sub><sup>2</sup> | Z<sub>5</sub><sup>2</sup> | Z<sub>5</sub> (6) | | Product. Elementary. |- ! 26 ! 78 ! G<sub>26</sub><sup>2</sup> | Z<sub>26</sub> = Z<sub>13</sub> Γ Z<sub>2</sub> | Z<sub>13</sub>, Z<sub>2</sub> | | Cyclic. Product. |- ! rowspan=3|27 ! 79 ! G<sub>27</sub><sup>1</sup> | Z<sub>27</sub> ||Z<sub>9</sub>, Z<sub>3</sub> | | Cyclic. |- ! 80 ! G<sub>27</sub><sup>2</sup> | Z<sub>9</sub> Γ Z<sub>3</sub> | Z<sub>9</sub>, Z<sub>3</sub> | | Product. |- ! 83 ! G<sub>27</sub><sup>5</sup> | Z<sub>3</sub><sup>3</sup> || Z<sub>3</sub> || || Product. Elementary. |- ! rowspan=2|28 ! 85 ! G<sub>28</sub><sup>2</sup> | Z<sub>28</sub> = Z<sub>7</sub> Γ Z<sub>4</sub> || Z<sub>14</sub>, Z<sub>7</sub>, Z<sub>4</sub>, Z<sub>2</sub> || || Cyclic. Product. |- ! 87 ! G<sub>28</sub><sup>4</sup> | Z<sub>14</sub> Γ Z<sub>2</sub> = Z<sub>7</sub> Γ Z<sub>2</sub><sup>2</sup> || Z<sub>14</sub>, Z<sub>7</sub>, Z<sub>4</sub>, Z<sub>2</sub> | | Product. |- ! 29 ! 88 ! G<sub>29</sub><sup>1</sup> | Z<sub>29</sub> | β | | Simple. Cyclic. Elementary. |- ! 30 ! 92 ! G<sub>30</sub><sup>4</sup> | style="white-space:nowrap;" | Z<sub>30</sub> = Z<sub>15</sub> Γ Z<sub>2</sub> = Z<sub>10</sub> Γ Z<sub>3</sub> = <br />Z<sub>6</sub> Γ Z<sub>5</sub> = Z<sub>5</sub> Γ Z<sub>3</sub> Γ Z<sub>2</sub> | Z<sub>15</sub>, Z<sub>10</sub>, Z<sub>6</sub>, Z<sub>5</sub>, Z<sub>3</sub>, Z<sub>2</sub> | | Cyclic. Product. |- ! 31 ! 93 ! G<sub>31</sub><sup>1</sup> | Z<sub>31</sub> | β | | Simple. Cyclic. Elementary. |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
List of small groups
(section)
Add topic