Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Leidenfrost effect
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Heat transfer correlations == The heat transfer coefficient may be approximated using Bromley's equation,<ref name="ReferenceA"/> <math display="block">h=C{{\left[ \frac{k_{v}^{3}{{\rho }_{v}}g\left( {{\rho }_{L}}-{{\rho }_{v}} \right)\left( {{h}_{fg}}+0.4{{c}_{pv}}\left( {{T}_{s}}-{{T}_{sat}} \right) \right)}{{{D}_{o}}{{\mu }_{v}}\left( {{T}_{s}}-{{T}_{sat}} \right)} \right]}^{{}^{1}\!\!\diagup\!\!{}_{4}\;}}</math> where <math>{{D}_{o}}</math> is the outside diameter of the tube. The correlation constant ''C'' is 0.62 for horizontal cylinders and vertical plates, and 0.67 for spheres. Vapor properties are evaluated at film temperature. For stable film boiling on a horizontal surface, Berenson has modified Bromley's equation to yield,<ref name="ReferenceB">{{cite book |first1=James R. |last1=Welty |first2=Charles E. |last2=Wicks |first3=Robert E. |last3=Wilson |first4=Gregory L. |last4=Rorrer |title=Fundamentals of Momentum, Heat and Mass transfer |edition=5th |year=2008 |publisher=John Wiley and Sons |page=327 |isbn=978-0-470-12868-8 }}</ref> <math display="block">h=0.425{{\left[ \frac{k_{vf}^{3}{{\rho }_{vf}}g\left( {{\rho }_{L}}-{{\rho }_{v}} \right)\left( {{h}_{fg}}+0.4{{c}_{pv}}\left( {{T}_{s}}-{{T}_{sat}} \right) \right)}{{{\mu }_{vf}}\left( {{T}_{s}}-{{T}_{sat}} \right)\sqrt{\sigma /g\left( {{\rho }_{L}}-{{\rho }_{v}} \right)}} \right]}^{{}^{1}\!\!\diagup\!\!{}_{4}\;}}</math> For vertical tubes, Hsu and Westwater have correlated the following equation,<ref name="ReferenceB"/> <math display="block">h{{\left[ \frac{\mu _{v}^{2}}{g{{\rho }_{v}}\left( {{\rho }_{L}}-{{\rho }_{v}} \right)k_{v}^{3}} \right]}^{{}^{1}\!\!\diagup\!\!{}_{3}\;}}=0.0020{{\left[ \frac{4m}{\pi {{D}_{v}}{{\mu }_{v}}} \right]}^{0.6}}</math> where m is the mass flow rate in <math>l{{b}_{m}}/hr</math> at the upper end of the tube. At excess temperatures above that at the minimum heat flux, the contribution of radiation becomes appreciable, and it becomes dominant at high excess temperatures. The total heat transfer coefficient is thus a combination of the two. Bromley has suggested the following equations for film boiling from the outer surface of horizontal tubes: <math display="block">{{h}^{{}^{4}\!\!\diagup\!\!{}_{3}\;}}={{h}_{conv}}^{{}^{4}\!\!\diagup\!\!{}_{3}\;}+{{h}_{rad}}{{h}^{{}^{1}\!\!\diagup\!\!{}_{3}\;}}</math> If <math>{{h}_{rad}}<{{h}_{conv}}</math>, <math display="block">h={{h}_{conv}}+\frac{3}{4}{{h}_{rad}}</math> The effective radiation coefficient, <math>{{h}_{rad}}</math> can be expressed as, <math display="block">{{h}_{rad}}=\frac{\varepsilon \sigma \left( T_{s}^{4}-T_{sat}^{4} \right)}{\left( {{T}_{s}}-{{T}_{sat}} \right)}</math> where <math>\varepsilon </math> is the emissivity of the solid and <math>\sigma </math> is the Stefan–Boltzmann constant.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Leidenfrost effect
(section)
Add topic