Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Langevin equation
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Generic Langevin equation == There is a formal derivation of a generic Langevin equation from classical mechanics.<ref name="Kawasaki1973">{{cite journal | last=Kawasaki|first=K.|year=1973|title=Simple derivations of generalized linear and nonlinear Langevin equations | journal=J. Phys. A: Math. Nucl. Gen.|volume=6|issue=9|pages=1289β1295|bibcode=1973JPhA....6.1289K|doi=10.1088/0305-4470/6/9/004}}<!--| accessdate = 2014-05-30 --></ref><ref name="den2015">{{cite arXiv |last=Dengler |first=R. |eprint=1506.02650v2 |title=Another derivation of generalized Langevin equations | year=2015 |class=physics.class-ph }}</ref> This generic equation plays a central role in the theory of [[Critical phenomena|critical dynamics]],<ref name="HH1977">{{cite journal |title=Theory of dynamic critical phenomena |journal=[[Reviews of Modern Physics]] |year=1977 |first1=P. C. |last1=Hohenberg |first2=B. I. |last2=Halperin |volume=49 |issue=3 |pages=435β479 |doi=10.1103/RevModPhys.49.435 |bibcode = 1977RvMP...49..435H |s2cid=122636335 }}</ref> and other areas of nonequilibrium statistical mechanics. The equation for Brownian motion above is a special case. An essential step in the derivation is the division of the degrees of freedom into the categories ''slow'' and ''fast''. For example, local thermodynamic equilibrium in a liquid is reached within a few collision times, but it takes much longer for densities of conserved quantities like mass and energy to relax to equilibrium. Thus, densities of conserved quantities, and in particular their long wavelength components, are slow variable candidates. This division can be expressed formally with the [[Zwanzig projection operator]].<ref>{{cite journal |title=Memory effects in irreversible thermodynamics |journal=[[Physical Review|Phys. Rev.]] |year=1961 |first=R. |last=Zwanzig |volume=124 |issue=4 |pages=983β992 |doi=10.1103/PhysRev.124.983 |bibcode = 1961PhRv..124..983Z }}</ref> Nevertheless, the derivation is not completely rigorous from a mathematical physics perspective because it relies on assumptions that lack rigorous proof, and instead are justified only as plausible approximations of physical systems. Let <math>A=\{A_i\}</math> denote the slow variables. The generic Langevin equation then reads <math display="block">\frac{\mathrm{d}A_{i}}{\mathrm{d}t}=k_\text{B}T\sum\limits_{j}{\left[ {A_{i},A_{j}}\right] \frac{{\mathrm{d}}\mathcal{H}}{{\mathrm{d}A_{j}}}}-\sum\limits_{j}{\lambda _{i,j}\left( A\right) \frac{\mathrm{d}\mathcal{H}}{{\mathrm{d}A_{j}}}+}\sum\limits_{j}{\frac{\mathrm{d}{\lambda _{i,j}\left(A\right) }}{{\mathrm{d}A_{j}}}}+\eta _{i}\left( t\right).</math> The fluctuating force <math>\eta_i\left( t\right)</math> obeys a [[Gaussian distribution|Gaussian probability distribution]] with correlation function <math display="block">\left\langle {\eta _{i}\left( t\right) \eta _{j}\left( t'\right) }\right\rangle =2\lambda _{i,j}\left( A\right) \delta \left( t-t'\right).</math> This implies the [[Onsager reciprocal relations|Onsager reciprocity relation]] <math>\lambda_{i,j}=\lambda_{j,i}</math> for the damping coefficients <math>\lambda</math>. The dependence <math>\mathrm{d}\lambda_{i,j}/\mathrm{d}A_j</math> of <math>\lambda</math> on <math>A</math> is negligible in most cases. The symbol <math>\mathcal{H}=-\ln\left(p_0\right)</math> denotes the [[Hamiltonian mechanics|Hamiltonian]] of the system, where <math>p_0\left(A\right)</math> is the equilibrium probability distribution of the variables <math>A</math>. Finally, <math>[A_i,A_j]</math> is the projection of the [[Poisson bracket]] of the slow variables <math>A_i</math> and <math>A_j</math> onto the space of slow variables. In the Brownian motion case one would have <math>\mathcal{H}=\mathbf{p}^2/\left(2mk_\text{B}T\right)</math>, <math>A=\{\mathbf{p}\}</math> or <math>A=\{\mathbf{x}, \mathbf{p}\}</math> and <math>[x_i, p_j]=\delta_{i,j}</math>. The equation of motion <math>\mathrm{d}\mathbf{x}/\mathrm{d}t=\mathbf{p}/m</math> for <math>\mathbf{x}</math> is exact: there is no fluctuating force <math>\eta_x</math> and no damping coefficient <math>\lambda_{x,p}</math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Langevin equation
(section)
Add topic