Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Integer factorization
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Time complexity === No [[algorithm]] has been published that can factor all integers in [[polynomial time]], that is, that can factor a {{math|''b''}}-bit number {{math|''n''}} in time {{math|[[Big O notation|O]](''b''<sup>''k''</sup>)}} for some constant {{math|''k''}}. Neither the existence nor non-existence of such algorithms has been proved, but it is generally suspected that they do not exist.<ref>{{citation |last=Krantz |first=Steven G. |author-link=Steven G. Krantz |doi=10.1007/978-0-387-48744-1 |isbn=978-0-387-48908-7 |location=New York |mr=2789493 |page=203 |publisher=Springer |title=The Proof is in the Pudding: The Changing Nature of Mathematical Proof |url=https://books.google.com/books?id=mMZBtxVZiQoC&pg=PA203 |year=2011}}</ref><ref>{{citation |last1=Arora |first1=Sanjeev |author1-link=Sanjeev Arora |last2=Barak |first2=Boaz |doi=10.1017/CBO9780511804090 |isbn=978-0-521-42426-4 |location=Cambridge |mr=2500087 |page=230 |publisher=Cambridge University Press |title=Computational complexity |url=https://books.google.com/books?id=nGvI7cOuOOQC&pg=PA230 |year=2009|s2cid=215746906 }}</ref> There are published algorithms that are faster than {{math|O((1Β +Β ''Ξ΅'')<sup>''b''</sup>)}} for all positive {{math|''Ξ΅''}}, that is, [[Time complexity#Sub-exponential time|sub-exponential]]. {{As of|2022}}, the algorithm with best theoretical asymptotic running time is the [[general number field sieve]] (GNFS), first published in 1993,<ref>{{cite book |last1=Buhler |first1=J. P. |last2=Lenstra |first2=H. W. Jr. |last3=Pomerance |first3=Carl |chapter=Factoring integers with the number field sieve |title=The development of the number field sieve |date=1993 |publisher=Springer |isbn=978-3-540-57013-4 |pages=50β94 |doi=10.1007/BFb0091539 |hdl=1887/2149 |series=Lecture Notes in Mathematics |volume=1554 |url=https://doi.org/10.1007/BFb0091539 |access-date=12 March 2021 |language=English}}</ref> running on a {{math|''b''}}-bit number {{math|''n''}} in time: : <math>\exp\left( \left(\left(\tfrac83\right)^\frac23 + o(1)\right)\left(\log n\right)^\frac13\left(\log \log n\right)^\frac23\right).</math> For current computers, GNFS is the best published algorithm for large {{math|''n''}} (more than about 400 bits). For a [[Quantum computing|quantum computer]], however, [[Peter Shor]] discovered an algorithm in 1994 that solves it in polynomial time. [[Shor's algorithm]] takes only {{math|O(''b''<sup>3</sup>)}} time and {{math|O(''b'')}} space on {{math|''b''}}-bit number inputs. In 2001, Shor's algorithm was implemented for the first time, by using [[Nuclear magnetic resonance|NMR]] techniques on molecules that provide seven qubits.<ref> {{cite journal | doi = 10.1038/414883a | title = Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance | journal = [[Nature (journal)|Nature]] | volume = 414 | pages = 883β887 | year = 2001 | last = Vandersypen | first=Lieven M. K. | issue = 6866 | display-authors=etal| arxiv = quant-ph/0112176 | pmid = 11780055 | bibcode = 2001Natur.414..883V | s2cid = 4400832 }}</ref> In order to talk about [[complexity class|complexity classes]] such as P, NP, and co-NP, the problem has to be stated as a [[decision problem]]. {{Math theorem |For every natural numbers <math>n</math> and <math>k</math>, does {{math|''n''}} have a factor smaller than {{math|''k''}} besides 1? |name=Decision problem |note=Integer factorization }} It is known to be in both [[NP (complexity)|NP]] and [[co-NP]], meaning that both "yes" and "no" answers can be verified in polynomial time. An answer of "yes" can be certified by exhibiting a factorization {{math|1=''n'' = ''d''({{sfrac|''n''|''d''}})}} with {{math|''d'' β€ ''k''}}. An answer of "no" can be certified by exhibiting the factorization of {{math|''n''}} into distinct primes, all larger than {{math|''k''}}; one can verify their primality using the [[AKS primality test]], and then multiply them to obtain {{math|''n''}}. The [[fundamental theorem of arithmetic]] guarantees that there is only one possible string of increasing primes that will be accepted, which shows that the problem is in both [[UP (complexity)|UP]] and co-UP.<ref> {{cite web | author = Lance Fortnow | title = Computational Complexity Blog: Complexity Class of the Week: Factoring | date = 2002-09-13 | url = http://weblog.fortnow.com/2002/09/complexity-class-of-week-factoring.html }}</ref> It is known to be in [[BQP]] because of Shor's algorithm. The problem is suspected to be outside all three of the complexity classes P, NP-complete,<ref>{{citation |last1=Goldreich |first1=Oded |author1-link=Oded Goldreich |last2=Wigderson |first2=Avi |author2-link=Avi Wigderson |editor1-last=Gowers |editor1-first=Timothy |editor1-link=Timothy Gowers |editor2-last=Barrow-Green |editor2-first=June |editor2-link=June Barrow-Green|editor3-last=Leader |editor3-first=Imre |editor3-link=Imre Leader |contribution=IV.20 Computational Complexity |isbn=978-0-691-11880-2 |location=Princeton, New Jersey |mr=2467561 |pages=575β604 |publisher=Princeton University Press |title=The Princeton Companion to Mathematics |year=2008}}. See in particular [https://books.google.com/books?id=ZOfUsvemJDMC&pg=PA583 p. 583].</ref> and [[co-NP-complete]]. It is therefore a candidate for the [[NP-intermediate]] complexity class. In contrast, the decision problem "Is {{math|''n''}} a composite number?" (or equivalently: "Is {{math|''n''}} a prime number?") appears to be much easier than the problem of specifying factors of {{math|''n''}}. The composite/prime problem can be solved in polynomial time (in the number {{math|''b''}} of digits of {{math|''n''}}) with the [[AKS primality test]]. In addition, there are several [[randomized algorithm|probabilistic algorithm]]s that can test primality very quickly in practice if one is willing to accept a vanishingly small possibility of error. The ease of [[primality test]]ing is a crucial part of the [[RSA (algorithm)|RSA]] algorithm, as it is necessary to find large prime numbers to start with.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Integer factorization
(section)
Add topic