Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Hyperbolic functions
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definitions== [[File:sinh cosh tanh.svg|thumb|<span style="color:#b30000;">sinh</span>, <span style="color:#00b300;">cosh</span> and <span style="color:#0000b3;">tanh</span>]] [[File:csch sech coth.svg|thumb|<span style="color:#b30000;">csch</span>, <span style="color:#00b300;">sech</span> and <span style="color:#0000b3;">coth</span>]] There are various equivalent ways to define the hyperbolic functions. === Exponential definitions === [[File:Hyperbolic and exponential; sinh.svg|thumb|right|{{math|sinh ''x''}} is half the [[Subtraction|difference]] of {{math|''e<sup>x</sup>''}} and {{math|''e''<sup>β''x''</sup>}}]] [[File:Hyperbolic and exponential; cosh.svg|thumb|right|{{math|cosh ''x''}} is the [[Arithmetic mean|average]] of {{math|''e<sup>x</sup>''}} and {{math|''e''<sup>β''x''</sup>}}]] In terms of the [[exponential function]]:<ref name=":1" /><ref name=":2" /> * Hyperbolic sine: the [[odd part of a function|odd part]] of the exponential function, that is, <math display="block"> \sinh x = \frac {e^x - e^{-x}} {2} = \frac {e^{2x} - 1} {2e^x} = \frac {1 - e^{-2x}} {2e^{-x}}.</math> * Hyperbolic cosine: the [[even part of a function|even part]] of the exponential function, that is, <math display="block"> \cosh x = \frac {e^x + e^{-x}} {2} = \frac {e^{2x} + 1} {2e^x} = \frac {1 + e^{-2x}} {2e^{-x}}.</math> * Hyperbolic tangent: <math display="block">\tanh x = \frac{\sinh x}{\cosh x} = \frac {e^x - e^{-x}} {e^x + e^{-x}} = \frac{e^{2x} - 1} {e^{2x} + 1}.</math> * Hyperbolic cotangent: for {{math|''x'' β 0}}, <math display="block">\coth x = \frac{\cosh x}{\sinh x} = \frac {e^x + e^{-x}} {e^x - e^{-x}} = \frac{e^{2x} + 1} {e^{2x} - 1}.</math> * Hyperbolic secant: <math display="block"> \operatorname{sech} x = \frac{1}{\cosh x} = \frac {2} {e^x + e^{-x}} = \frac{2e^x} {e^{2x} + 1}.</math> * Hyperbolic cosecant: for {{math|''x'' β 0}}, <math display="block"> \operatorname{csch} x = \frac{1}{\sinh x} = \frac {2} {e^x - e^{-x}} = \frac{2e^x} {e^{2x} - 1}.</math> === Differential equation definitions === The hyperbolic functions may be defined as solutions of [[differential equation]]s: The hyperbolic sine and cosine are the solution {{math|(''s'', ''c'')}} of the system <math display="block">\begin{align} c'(x)&=s(x),\\ s'(x)&=c(x),\\ \end{align} </math> with the initial conditions <math>s(0) = 0, c(0) = 1.</math> The initial conditions make the solution unique; without them any pair of functions <math>(a e^x + b e^{-x}, a e^x - b e^{-x})</math> would be a solution. {{math|sinh(''x'')}} and {{math|cosh(''x'')}} are also the unique solution of the equation {{math|1=''f'' β³(''x'') = ''f'' (''x'')}}, such that {{math|1=''f'' (0) = 1}}, {{math|1=''f'' β²(0) = 0}} for the hyperbolic cosine, and {{math|1=''f'' (0) = 0}}, {{math|1=''f'' β²(0) = 1}} for the hyperbolic sine. === Complex trigonometric definitions === Hyperbolic functions may also be deduced from [[trigonometric function]]s with [[complex number|complex]] arguments: * Hyperbolic sine:<ref name=":1" /> <math display="block">\sinh x = -i \sin (i x).</math> * Hyperbolic cosine:<ref name=":1" /> <math display="block">\cosh x = \cos (i x).</math> * Hyperbolic tangent: <math display="block">\tanh x = -i \tan (i x).</math> * Hyperbolic cotangent: <math display="block">\coth x = i \cot (i x).</math> * Hyperbolic secant: <math display="block"> \operatorname{sech} x = \sec (i x).</math> * Hyperbolic cosecant:<math display="block">\operatorname{csch} x = i \csc (i x).</math> where {{mvar|i}} is the [[imaginary unit]] with {{math|1=''i''<sup>2</sup> = β1}}. The above definitions are related to the exponential definitions via [[Euler's formula]] (See {{Section link||Hyperbolic functions for complex numbers}} below).
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Hyperbolic functions
(section)
Add topic