Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
High-Level Data Link Control
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Synchronous framing === Because a flag sequence consists of six consecutive 1-bits, other data is coded to ensure that it never contains more than five 1-bits in a row. This is done by [[bit stuffing]]: any time that five consecutive 1-bits appear in the transmitted data, the data is paused and a 0-bit is transmitted. The receiving device knows that this is being done, and after seeing five 1-bits in a row, a following 0-bit is stripped out of the received data. If instead the sixth bit is 1, this is either a flag (if the seventh bit is 0), or an error (if the seventh bit is 1). In the latter case, the frame receive procedure is aborted, to be restarted when a flag is next seen. This bit-stuffing serves a second purpose, that of ensuring a sufficient number of signal transitions. On synchronous links, the data is [[NRZI#Non-return-to-zero inverted|NRZI]] encoded, so that a 0-bit is transmitted as a change in the signal on the line, and a 1-bit is sent as no change. Thus, each 0 bit provides an opportunity for a receiving [[modem]] to synchronize its clock via a [[phase-locked loop]]. If there are too many 1-bits in a row, the receiver can lose count. Bit-stuffing provides a minimum of one transition per six bit times during transmission of data, and one transition per seven bit times during transmission of a flag. When no frames are being transmitted on a simplex or full-duplex synchronous link, a frame delimiter is continuously transmitted on the link. This generates one of two continuous waveforms, depending on the initial state: [[File:NrziEncodedFlags.png]] The HDLC specification allows the 0-bit at the end of a frame delimiter to be shared with the start of the next frame delimiter, i.e. "011111101111110". Some hardware does not support this. For half-duplex or multi-drop communication, where several transmitters share a line, a receiver on the line will see continuous idling 1-bits in the inter-frame period when no transmitter is active. HDLC transmits bytes of data with the least significant bit first (not to be confused with [[little-endian]] order, which refers to byte ordering within a multi-byte field).
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
High-Level Data Link Control
(section)
Add topic