Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
General topology
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Basis for a topology=== {{Main|Basis (topology)}} A '''base''' (or '''basis''') ''B'' for a [[topological space]] ''X'' with [[topological space|topology]] ''T'' is a collection of [[open set]]s in ''T'' such that every open set in ''T'' can be written as a union of elements of ''B''.<ref>{{cite book |last1=Merrifield |first1=Richard E. |last2=Simmons |first2=Howard E. |author-link2=Howard Ensign Simmons Jr. |title=Topological Methods in Chemistry |year=1989 |publisher=John Wiley & Sons |location=New York |isbn=0-471-83817-9 |url=https://archive.org/details/topologicalmetho00merr/page/16 |access-date=27 July 2012 |pages=[https://archive.org/details/topologicalmetho00merr/page/16 16] |quote='''Definition.''' A collection ''B'' of subsets of a topological space ''(X,T)'' is called a ''basis'' for ''T'' if every open set can be expressed as a union of members of ''B''. |url-access=registration }}</ref><ref>{{cite book |last=Armstrong |first=M. A. |title=Basic Topology |year=1983 |publisher=Springer |isbn=0-387-90839-0 |url=https://www.springer.com/mathematics/geometry/book/978-0-387-90839-7 |access-date=13 June 2013 |page=30 |quote=Suppose we have a topology on a set ''X'', and a collection <math>\beta</math> of open sets such that every open set is a union of members of <math>\beta</math>. Then <math>\beta</math> is called a ''base'' for the topology...}}</ref> We say that the base ''generates'' the topology ''T''. Bases are useful because many properties of topologies can be reduced to statements about a base that generates that topology—and because many topologies are most easily defined in terms of a base that generates them.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
General topology
(section)
Add topic