Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Gauss–Markov theorem
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Remark === Proof that the OLS indeed ''minimizes'' the sum of squares of residuals may proceed as follows with a calculation of the [[Hessian matrix]] and showing that it is positive definite. The MSE function we want to minimize is <math display="block">f(\beta_0,\beta_1,\dots,\beta_p) = \sum_{i=1}^n (y_i-\beta_0-\beta_1x_{i1}-\dots-\beta_px_{ip})^2</math> for a multiple regression model with ''p'' variables. The first derivative is <math display="block">\begin{aligned} \frac{d}{d\boldsymbol{\beta}}f &= -2X^\operatorname{T} \left(\mathbf{y}-X\boldsymbol{\beta}\right)\\ &=-2\begin{bmatrix} \sum_{i=1}^{n} (y_i - \dots - \beta_px_{ip})\\ \sum_{i=1}^nx_{i1} (y_i-\dots-\beta_px_{ip})\\ \vdots\\ \sum_{i=1}^nx_{ip} (y_i-\dots-\beta_px_{ip}) \end{bmatrix}\\ &= \mathbf{0}_{p+1}, \end{aligned}</math> where <math>X^\operatorname{T}</math> is the design matrix <math display="block">X=\begin{bmatrix} 1 & x_{11} & \cdots & x_{1p}\\ 1 & x_{21} & \cdots & x_{2p}\\ &&\vdots\\ 1 & x_{n1} & \cdots & x_{np} \end{bmatrix}\in \R^{n\times(p+1)}; \qquad n\geq p+1</math> The [[Hessian matrix]] of second derivatives is <math display="block">\mathcal{H} = 2\begin{bmatrix} n & \sum_{i=1}^n x_{i1} & \cdots & \sum_{i=1}^n x_{ip} \\ \sum_{i=1}^n x_{i1}& \sum_{i=1}^n x_{i1}^2 & \cdots & \sum_{i=1}^nx_{i1}x_{ip}\\ \vdots & \vdots &\ddots & \vdots \\ \sum_{i=1}^n x_{ip} & \sum_{i=1}^n x_{ip}x_{i1}& \cdots & \sum_{i=1}^n x_{ip}^2 \end{bmatrix} = 2X^\operatorname{T}X</math> Assuming the columns of <math>X</math> are linearly independent so that <math>X^\operatorname{T} X</math> is invertible, let <math>X=\begin{bmatrix}\mathbf{v_1}& \mathbf{v_2}& \cdots & \mathbf{v}_{p+1}\end{bmatrix}</math>, then <math display="block">k_1\mathbf{v_1} + \dots + k_{p+1} \mathbf{v}_{p+1} = \mathbf 0\iff k_1= \dots =k_{p+1}=0</math> Now let <math>\mathbf{k} = (k_1,\dots,k_{p+1})^T \in \R^{(p+1)\times 1}</math> be an eigenvector of <math>\mathcal{H}</math>. <math display="block">\mathbf{k} \ne \mathbf{0} \implies \left(k_1\mathbf{v_1}+\dots+k_{p+1}\mathbf{v}_{p+1}\right)^2 > 0</math> In terms of vector multiplication, this means <math display="block">\begin{bmatrix} k_1 & \cdots & k_{p+1} \end{bmatrix} \begin{bmatrix}\mathbf{v_1} \\ \vdots \\ \mathbf{v}_{p+1}\end{bmatrix} \begin{bmatrix}\mathbf{v_1} & \cdots & \mathbf{v}_{p+1}\end{bmatrix} \begin{bmatrix}k_1 \\ \vdots\\ k_{p+1}\end{bmatrix} = \mathbf{k}^\operatorname{T}\mathcal{H}\mathbf{k} = \lambda \mathbf{k}^\operatorname{T}\mathbf{k}>0</math> where <math>\lambda</math> is the eigenvalue corresponding to <math>\mathbf{k}</math>. Moreover, <math display="block">\mathbf{k}^\operatorname{T}\mathbf{k} = \sum_{i=1}^{p+1}k_i^2 > 0 \implies \lambda > 0</math> Finally, as eigenvector <math>\mathbf{k}</math> was arbitrary, it means all eigenvalues of <math>\mathcal{H}</math> are positive, therefore <math>\mathcal{H}</math> is positive definite. Thus, <math display="block">\boldsymbol{\beta} = \left(X^\operatorname{T}X\right)^{-1}X^\operatorname{T}Y</math> is indeed a global minimum. Or, just see that for all vectors <math>\mathbf{v}, \mathbf{v}^\operatorname{T} X^\operatorname{T} X \mathbf{v} = \|\mathbf{X}\mathbf{v}\|^2 \ge 0 </math>. So the Hessian is positive definite if full rank.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Gauss–Markov theorem
(section)
Add topic