Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
G.711
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== A-law === {{Main|A-law algorithm}} A-law encoding thus takes a 13-bit signed linear audio sample as input and converts it to an 8 bit value as follows: {| class="wikitable" style="text-align:left" |- ! Linear input code<br><ref group=note>This value is produced by taking the [[two's complement]] representation of the input value, and inverting all bits after the sign bit if the value is negative.</ref> ! Compressed code<br>XOR 01010101 ! Linear output code<br><ref group=note>[[Signed magnitude]] representation</ref> |- | <code>s0000000abcdx</code> || <code>{{overline|s}}000abcd</code> || <code>s0000000abcd1</code> |- | <code>s0000001abcdx</code> || <code>{{overline|s}}001abcd</code> || <code>s0000001abcd1</code> |- | <code>s000001abcdxx</code> || <code>{{overline|s}}010abcd</code> || <code>s000001abcd10</code> |- | <code>s00001abcdxxx</code> || <code>{{overline|s}}011abcd</code> || <code>s00001abcd100</code> |- | <code>s0001abcdxxxx</code> || <code>{{overline|s}}100abcd</code> || <code>s0001abcd1000</code> |- | <code>s001abcdxxxxx</code> || <code>{{overline|s}}101abcd</code> || <code>s001abcd10000</code> |- | <code>s01abcdxxxxxx</code> || <code>{{overline|s}}110abcd</code> || <code>s01abcd100000</code> |- | <code>s1abcdxxxxxxx</code> || <code>{{overline|s}}111abcd</code> || <code>s1abcd1000000</code> |} <references group=note/> Where {{code|s}} is the sign bit, <code>{{overline|s}}</code> is its inverse (i.e. positive values are encoded with [[most significant bit|MSB]] = {{var|{{overline|s}}}} = 1), and bits marked {{code|x}} are discarded. Note that the first column of the table uses different representation of negative values than the third column. So for example, input decimal value β21 is represented in binary after bit inversion as 1000000010100, which maps to 00001010 (according to the first row of the table). When decoding, this maps back to 1000000010101, which is interpreted as output value β21 in decimal. Input value +52 (0000000110100 in binary) maps to 10011010 (according to the second row), which maps back to 0000000110101 (+53 in decimal). This can be seen as a [[Floating-point arithmetic|floating-point]] number with 4 bits of [[Significand|mantissa]] {{var|m}} (equivalent to a 5-bit precision), 3 bits of [[exponent]] {{var|e}} and 1 sign bit {{var|s}}, formatted as <code>{{overline|s}}eeemmmm</code> with the decoded linear value {{var|y}} given by formula :<math>y = (-1)^s \cdot (16 \cdot \min \{ e, 1 \} + m + 0.5) \cdot 2^{\max \{ e, 1 \} },</math> which is a 13-bit signed integer in the range Β±1 to Β±(2{{sup|12}} β 2{{sup|6}}). Note that no compressed code decodes to zero due to the addition of 0.5 (half of a quantization step). In addition, the standard specifies that all resulting even bits ([[least significant bit|LSB]] is even) are inverted before the octet is transmitted. This is to provide plenty of 0/1 transitions to facilitate the [[clock recovery]] process in the PCM receivers. Thus, a silent A-law encoded PCM channel has the 8 bit samples coded 0xD5 instead of 0x80 in the octets. When data is sent over E0 ([[G.703]]), MSB (sign) is sent first and LSB is sent last. ITU-T STL<ref>[http://www.itu.int/rec/T-REC-G.191-201003-I/en G.191 : Software tools for speech and audio coding standardization]. Function {{code|alaw_expand}} in file {{code|Software/stl2009/g711/g711.c}}. Itu.int. Retrieved on 2013-09-18.</ref> defines the algorithm for decoding as follows (it puts the decoded values in the 13 most significant bits of the 16-bit output data type). <syntaxhighlight lang="c"> void alaw_expand(lseg, logbuf, linbuf) long lseg; short *linbuf; short *logbuf; { short ix, mant, iexp; long n; for (n = 0; n < lseg; n++) { ix = logbuf[n] ^ (0x0055); /* re-toggle toggled bits */ ix &= (0x007F); /* remove sign bit */ iexp = ix >> 4; /* extract exponent */ mant = ix & (0x000F); /* now get mantissa */ if (iexp > 0) mant = mant + 16; /* add leading '1', if exponent > 0 */ mant = (mant << 4) + (0x0008); /* now mantissa left justified and */ /* 1/2 quantization step added */ if (iexp > 1) /* now left shift according exponent */ mant = mant << (iexp - 1); linbuf[n] = logbuf[n] > 127 /* invert, if negative sample */ ? mant : -mant; } } </syntaxhighlight> See also "ITU-T Software Tool Library 2009 User's manual" that can be found at.<ref>[http://www.itu.int/rec/T-REC-G.191/recommendation.asp?lang=en&parent=T-REC-G.191-200911-I G.191 : ITU-T Software Tool Library 2009 User's manual]. Itu.int (2010-07-23). Retrieved on 2013-09-18.</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
G.711
(section)
Add topic