Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Fusor
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Fusor concept=== The fusor is part of a broader class of devices that attempts to give the fuel fusion-relevant energies by directly accelerating the ions toward each other. In the case of the fusor, this is accomplished with electrostatic forces. For every [[volt]] that an ion of ±1 charge is accelerated across it gains 1 [[electronvolt]] in energy. To reach the required ~10 keV, a voltage of 10 kV is required, applied to both particles. For comparison, the [[electron gun]] in a typical television [[cathode-ray tube]] is on the order of 3 to 6 kV, so the complexity of such a device is fairly limited. For a variety of reasons, energies on the order of 15 keV are used. This corresponds to the average kinetic energy at a temperature of approximately 174 million Kelvin, a typical [[magnetic confinement fusion]] plasma temperature. The problem with this [[colliding beam fusion]] approach, in general, is that the ions will most likely never hit each other no matter how precisely aimed. Even the most minor misalignment will cause the particles to [[Scattering|scatter]] and thus fail to fuse. It is simple to demonstrate that the scattering chance is many orders of magnitude higher than the fusion rate, meaning that the vast majority of the energy supplied to the ions will go to waste and those fusion reactions that do occur cannot make up for these losses. To be energy positive, a fusion device must recycle these ions back into the fuel mass so that they have thousands or millions of such chances to fuse, and their energy must be retained as much as possible during this period. The fusor attempts to meet this requirement through the spherical arrangement of its accelerator grid system. Ions that fail to fuse pass through the center of the device and back into the accelerator on the far side, where they are accelerated back into the center again. There is no energy lost in this action, and in theory, assuming infinitely thin grid wires, the ions can circulate forever with no additional energy needed. Even those that scatter will simply take on a new trajectory, exit the grid at some new point, and accelerate back into the center again, providing the circulation that is required for a fusion event to eventually take place.<ref name=MM/> [[File:Fusor Mechanism.png|thumb|center|upright=2|Basic mechanism of fusion in fusors. (1) The fusor contains two concentric wire cages: the cathode is inside the anode. (2) Positive ions are attracted to the inner cathode, they fall down the voltage drop and gain energy. (3) The ions miss the inner cage and enter the neutral reaction area. (4) The ions may collide in the center and may fuse.<ref name="Tim Thorson 1996">Tim Thorson, "Ion flow and fusion reactivity characterization of a spherically convergent ion focus", Thesis work, December 1996, The University of Wisconsin–Madison.</ref>]]
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Fusor
(section)
Add topic