Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Fourier transform
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Angular frequency (''ω'') === When the independent variable (<math>x</math>) represents ''time'' (often denoted by <math>t</math>), the transform variable (<math>\xi</math>) represents [[frequency]] (often denoted by <math>f</math>). For example, if time is measured in [[second]]s, then frequency is in [[hertz]]. The Fourier transform can also be written in terms of [[angular frequency]], <math>\omega = 2\pi \xi,</math> whose units are [[radian]]s per second. The substitution <math>\xi = \tfrac{\omega}{2 \pi}</math> into {{EquationNote|Eq.1}} produces this convention, where function <math>\widehat f</math> is relabeled <math>\widehat {f_1}:</math> <math display="block">\begin{align} \widehat {f_3}(\omega) &\triangleq \int_{-\infty}^{\infty} f(x)\cdot e^{-i\omega x}\, dx = \widehat{f_1}\left(\tfrac{\omega}{2\pi}\right),\\ f(x) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \widehat{f_3}(\omega)\cdot e^{i\omega x}\, d\omega. \end{align} </math> Unlike the {{EquationNote|Eq.1}} definition, the Fourier transform is no longer a [[unitary transformation]], and there is less symmetry between the formulas for the transform and its inverse. Those properties are restored by splitting the <math>2 \pi</math> factor evenly between the transform and its inverse, which leads to another convention: <math display="block">\begin{align} \widehat{f_2}(\omega) &\triangleq \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)\cdot e^{- i\omega x}\, dx = \frac{1}{\sqrt{2\pi}}\ \ \widehat{f_1}\left(\tfrac{\omega}{2\pi}\right), \\ f(x) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \widehat{f_2}(\omega)\cdot e^{ i\omega x}\, d\omega. \end{align}</math> Variations of all three conventions can be created by conjugating the complex-exponential [[integral kernel|kernel]] of both the forward and the reverse transform. The signs must be opposites. {| class="wikitable" |+ Summary of popular forms of the Fourier transform, one-dimensional |- ! ordinary frequency {{mvar|ΞΎ}} (Hz) ! unitary | <math>\begin{align} \widehat{f_1}(\xi)\ &\triangleq\ \int_{-\infty}^{\infty} f(x)\, e^{-i 2\pi \xi x}\, dx = \sqrt{2\pi}\ \ \widehat{f_2}(2 \pi \xi) = \widehat{f_3}(2 \pi \xi) \\ f(x) &= \int_{-\infty}^{\infty} \widehat{f_1}(\xi)\, e^{i 2\pi x \xi}\, d\xi \end{align}</math> |- ! rowspan="2" | angular frequency {{mvar|Ο}} (rad/s) ! unitary | <math>\begin{align} \widehat{f_2}(\omega)\ &\triangleq\ \frac{1}{\sqrt{2\pi}}\ \int_{-\infty}^{\infty} f(x)\, e^{-i \omega x}\, dx = \frac{1}{\sqrt{2\pi}}\ \ \widehat{f_1} \! \left(\frac{\omega}{2 \pi}\right) = \frac{1}{\sqrt{2\pi}}\ \ \widehat{f_3}(\omega) \\ f(x) &= \frac{1}{\sqrt{2\pi}}\ \int_{-\infty}^{\infty} \widehat{f_2}(\omega)\, e^{i \omega x}\, d\omega \end{align}</math> |- ! non-unitary | <math>\begin{align} \widehat{f_3}(\omega) \ &\triangleq\ \int_{-\infty}^{\infty} f(x)\, e^{-i\omega x}\, dx = \widehat{f_1} \left(\frac{\omega}{2 \pi}\right) = \sqrt{2\pi}\ \ \widehat{f_2}(\omega) \\ f(x) &= \frac{1}{2 \pi} \int_{-\infty}^{\infty} \widehat{f_3}(\omega)\, e^{i \omega x}\, d\omega \end{align}</math> |} {| class="wikitable" |+ Generalization for {{math|''n''}}-dimensional functions |- ! ordinary frequency {{mvar|ΞΎ}} (Hz) ! unitary | <math>\begin{align} \widehat{f_1}(\xi)\ &\triangleq\ \int_{\mathbb{R}^n} f(x) e^{-i 2\pi \xi\cdot x}\, dx = (2 \pi)^\frac{n}{2}\widehat{f_2}(2\pi \xi) = \widehat{f_3}(2\pi \xi) \\ f(x) &= \int_{\mathbb{R}^n} \widehat{f_1}(\xi) e^{i 2\pi \xi\cdot x}\, d\xi \end{align}</math> |- ! rowspan="2" | angular frequency {{mvar|Ο}} (rad/s) ! unitary | <math>\begin{align} \widehat{f_2}(\omega)\ &\triangleq\ \frac{1}{(2 \pi)^\frac{n}{2}} \int_{\mathbb{R}^n} f(x) e^{-i \omega\cdot x}\, dx = \frac{1}{(2 \pi)^\frac{n}{2}} \widehat{f_1} \! \left(\frac{\omega}{2 \pi}\right) = \frac{1}{(2 \pi)^\frac{n}{2}} \widehat{f_3}(\omega) \\ f(x) &= \frac{1}{(2 \pi)^\frac{n}{2}} \int_{\mathbb{R}^n} \widehat{f_2}(\omega)e^{i \omega\cdot x}\, d\omega \end{align}</math> |- ! non-unitary | <math>\begin{align} \widehat{f_3}(\omega) \ &\triangleq\ \int_{\mathbb{R}^n} f(x) e^{-i\omega\cdot x}\, dx = \widehat{f_1} \left(\frac{\omega}{2 \pi}\right) = (2 \pi)^\frac{n}{2} \widehat{f_2}(\omega) \\ f(x) &= \frac{1}{(2 \pi)^n} \int_{\mathbb{R}^n} \widehat{f_3}(\omega) e^{i \omega\cdot x}\, d\omega \end{align}</math> |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Fourier transform
(section)
Add topic