Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Feigenbaum constants
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Illustration=== ====Non-linear maps==== To see how this number arises, consider the [[real number|real]] one-parameter map :<math>f(x) = a-x^2.</math> Here {{mvar|a}} is the bifurcation parameter, {{mvar|x}} is the variable. The values of {{mvar|a}} for which the period doubles (e.g. the largest value for {{mvar|a}} with no {{nowrap|period-2}} orbit, or the largest {{mvar|a}} with no {{nowrap|period-4}} orbit), are {{math|''a''<sub>1</sub>}}, {{math|''a''<sub>2</sub>}} etc. These are tabulated below:<ref>Alligood, [https://books.google.com/books?id=i633SeDqq-oC&pg=PA503 p. 503].</ref> :{| class="wikitable" |- ! {{mvar|n}} ! Period ! Bifurcation parameter ({{mvar|a<sub>n</sub>}}) ! Ratio {{math|{{sfrac|''a''{{sub|''n''β1}} β ''a''{{sub|''n''β2}}|''a''{{sub|''n''}} β ''a''{{sub|''n''β1}}}}}} |- | 1 || 2 || 0.75 || β |- | 2 || 4 || 1.25 || β |- | 3 || 8 || {{val|1.3680989}} || 4.2337 |- | 4 || 16 || {{val|1.3940462}} || 4.5515 |- | 5 || 32 || {{val|1.3996312}} || 4.6458 |- | 6 || 64 || {{val|1.4008286}} || 4.6639 |- | 7 || 128 || {{val|1.4010853}} || 4.6682 |- | 8 || 256 || {{val|1.4011402}} || 4.6689 |- |} The ratio in the last column converges to the first Feigenbaum constant. The same number arises for the [[logistic map]] :<math>f(x) = ax(1-x)</math> with real parameter {{mvar|a}} and variable {{mvar|x}}. Tabulating the bifurcation values again:<ref>Alligood, [https://books.google.com/books?id=i633SeDqq-oC&pg=PA504 p. 504].</ref> :{| class="wikitable" |- ! {{mvar|n}} ! Period ! Bifurcation parameter ({{mvar|a<sub>n</sub>}}) ! Ratio {{math|{{sfrac|''a''{{sub|''n''β1}} β ''a''{{sub|''n''β2}}|''a''{{sub|''n''}} β ''a''{{sub|''n''β1}}}}}} |- | 1 || 2 || 3 || β |- | 2 || 4 || {{val|3.4494897}} || β |- | 3 || 8 || {{val|3.5440903}} || 4.7514 |- | 4 || 16 || {{val|3.5644073}} || 4.6562 |- | 5 || 32 || {{val|3.5687594}} || 4.6683 |- | 6 || 64 || {{val|3.5696916}} || 4.6686 |- | 7 || 128 || {{val|3.5698913}} || 4.6680 |- | 8 || 256 || {{val|3.5699340}} || 4.6768 |- |} ====Fractals==== [[Image:Mandelbrot zoom.gif|right|thumb|201px|[[Self-similarity]] in the [[Mandelbrot set]] shown by zooming in on a round feature while panning in the negative-{{mvar|x}} direction. The display center pans from (β1, 0) to (β1.31, 0) while the view magnifies from 0.5 Γ 0.5 to 0.12 Γ 0.12 to approximate the Feigenbaum ratio.]] In the case of the [[Mandelbrot set]] for [[complex quadratic polynomial]] :<math>f(z) = z^2 + c</math> the Feigenbaum constant is the limiting ratio between the diameters of successive circles on the [[real line|real axis]] in the [[complex plane]] (see animation on the right). :{| class="wikitable" |- ! {{mvar|n}} ! Period = {{math|2<sup>''n''</sup>}} ! Bifurcation parameter ({{mvar|c<sub>n</sub>}}) ! Ratio <math>= \dfrac{c_{n-1} - c_{n-2}}{c_n - c_{n-1}}</math> |- | 1 || 2 || {{val|-0.75}} || β |- | 2 || 4 || {{val|-1.25}} || β |- | 3 || 8 || {{val|-1.3680989}} || 4.2337 |- | 4 || 16 || {{val|-1.3940462}} || 4.5515 |- | 5 || 32 || {{val|-1.3996312}} || 4.6459 |- | 6 || 64 || {{val|-1.4008287}} || 4.6639 |- | 7 || 128 || {{val|-1.4010853}} || 4.6668 |- | 8 || 256 || {{val|-1.4011402}} || 4.6740 |- |9 ||512 ||{{val|-1.401151982029}} ||4.6596 |- |10 ||1024 ||{{val|-1.401154502237}} ||4.6750 |- |... ||... ||... ||... |- |{{math|β}} || || {{val|-1.4011551890}}... || |} Bifurcation parameter is a root point of period-{{math|2<sup>''n''</sup>}} component. This series converges to '''the Feigenbaum point''' {{mvar|c}} = β1.401155...... The ratio in the last column converges to the first Feigenbaum constant. [[File:Feigenbaum Julia set.png|thumb|right|[[Julia set]] for the '''Feigenbaum point''']] Other maps also reproduce this ratio; in this sense the Feigenbaum constant in [[bifurcation theory]] is analogous to [[Pi (number)|{{pi}}]] in [[geometry]] and {{math|[[e (mathematical constant)|''e'']]}} in [[calculus]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Feigenbaum constants
(section)
Add topic