Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Euclidean geometry
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Parallel postulate=== {{main|Parallel postulate}} To the ancients, the parallel postulate seemed less obvious than the others. They aspired to create a system of absolutely certain propositions, and to them, it seemed as if the parallel line postulate required proof from simpler statements. It is now known that such a proof is impossible since one can construct consistent systems of geometry (obeying the other axioms) in which the parallel postulate is true, and others in which it is false.<ref>{{Citation|title=History of the Parallel Postulate|journal=The American Mathematical Monthly|volume=27|issue=1|pages=16β23|date=Jan 1920|author=Florence P. Lewis|doi=10.2307/2973238|publisher=The American Mathematical Monthly, Vol. 27, No. 1|postscript=.|jstor=2973238}}</ref> Euclid himself seems to have considered it as being qualitatively different from the others, as evidenced by the organization of the ''Elements'': his first 28 propositions are those that can be proved without it. Many alternative axioms can be formulated which are [[logical equivalence|logically equivalent]] to the parallel postulate (in the context of the other axioms). For example, [[Playfair's axiom]] states: :In a [[Plane (geometry)|plane]], through a point not on a given straight line, at most one line can be drawn that never meets the given line. The "at most" clause is all that is needed since it can be proved from the remaining axioms that at least one parallel line exists. [[File:euclid-proof.svg|thumb|A proof from Euclid's ''Elements'' that, given a line segment, one may construct an equilateral triangle that includes the segment as one of its sides: an equilateral triangle ΞΞΞ is made by drawing circles Ξ and Ξ centered on the points Ξ and Ξ, and taking one intersection of the circles as the third vertex of the triangle.]]
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Euclidean geometry
(section)
Add topic