Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Euclidean algorithm
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Proof of validity === The validity of the Euclidean algorithm can be proven by a two-step argument.<ref>{{Harvnb|Stark|1978|pp=16β20}}</ref> In the first step, the final nonzero remainder {{math|''r''<sub>''N''β1</sub>}} is shown to divide both {{math|''a''}} and {{math|''b''}}. Since it is a common divisor, it must be less than or equal to the greatest common divisor {{math|''g''}}. In the second step, it is shown that any common divisor of {{math|''a''}} and {{math|''b''}}, including {{math|''g''}}, must divide {{math|''r''<sub>''N''β1</sub>}}; therefore, {{math|''g''}} must be less than or equal to {{math|''r''<sub>''N''β1</sub>}}. These two opposite inequalities imply {{math|1=''r''<sub>''N''β1</sub> = ''g''}}. To demonstrate that {{math|''r''<sub>''N''β1</sub>}} divides both {{math|''a''}} and {{math|''b''}} (the first step), {{math|''r''<sub>''N''β1</sub>}} divides its predecessor {{math|''r''<sub>''N''β2</sub>}} : {{math|1=''r''<sub>''N''β2</sub> = ''q''<sub>''N''</sub> ''r''<sub>''N''β1</sub>}} since the final remainder {{math|''r''<sub>''N''</sub>}} is zero. {{math|''r''<sub>''N''β1</sub>}} also divides its next predecessor {{math|''r''<sub>''N''β3</sub>}} : {{math|1=''r''<sub>''N''β3</sub> = ''q''<sub>''N''β1</sub> ''r''<sub>''N''β2</sub> + ''r''<sub>''N''β1</sub>}} because it divides both terms on the right-hand side of the equation. Iterating the same argument, {{math|''r''<sub>''N''β1</sub>}} divides all the preceding remainders, including {{math|''a''}} and {{math|''b''}}. None of the preceding remainders {{math|''r''<sub>''N''β2</sub>}}, {{math|''r''<sub>''N''β3</sub>}}, etc. divide {{math|''a''}} and {{math|''b''}}, since they leave a remainder. Since {{math|''r''<sub>''N''β1</sub>}} is a common divisor of {{math|''a''}} and {{math|''b''}}, {{math|''r''<sub>''N''β1</sub> β€ ''g''}}. In the second step, any natural number {{math|''c''}} that divides both {{math|''a''}} and {{math|''b''}} (in other words, any common divisor of {{math|''a''}} and {{math|''b''}}) divides the remainders {{math|''r''<sub>''k''</sub>}}. By definition, {{math|''a''}} and {{math|''b''}} can be written as multiples of {{math|''c''}}: {{math|1=''a'' = ''mc''}} and {{math|1=''b'' = ''nc''}}, where {{math|''m''}} and {{math|''n''}} are natural numbers. Therefore, {{math|''c''}} divides the initial remainder {{math|''r''<sub>0</sub>}}, since {{math|1=''r''<sub>0</sub> = ''a'' β ''q''<sub>0</sub>''b'' = ''mc'' β ''q''<sub>0</sub>''nc'' = (''m'' β ''q''<sub>0</sub>''n'')''c''}}. An analogous argument shows that {{math|''c''}} also divides the subsequent remainders {{math|''r''<sub>1</sub>}}, {{math|''r''<sub>2</sub>}}, etc. Therefore, the greatest common divisor {{math|''g''}} must divide {{math|''r''<sub>''N''β1</sub>}}, which implies that {{math|''g'' β€ ''r''<sub>''N''β1</sub>}}. Since the first part of the argument showed the reverse ({{math|''r''<sub>''N''β1</sub> β€ ''g''}}), it follows that {{math|1=''g'' = ''r''<sub>''N''β1</sub>}}. Thus, {{math|''g''}} is the greatest common divisor of all the succeeding pairs:<ref>{{harvnb|Knuth|1997|p=320}}</ref><ref name="Lovasz_2003">{{cite book | last1 = LovΓ‘sz |first1=L.|author1-link=LΓ‘szlΓ³ LovΓ‘sz|last2= PelikΓ‘n|first2=J.|last3=Vesztergombi|first3= K. |author3-link= Katalin Vesztergombi | year = 2003 | title = Discrete Mathematics: Elementary and Beyond | publisher = Springer-Verlag | location = New York | isbn = 0-387-95584-4 | pages = 100β101}}</ref> : {{math|1=''g'' = gcd(''a'', ''b'') = gcd(''b'', ''r''<sub>0</sub>) = gcd(''r''<sub>0</sub>, ''r''<sub>1</sub>) = ... = gcd(''r''<sub>''N''β2</sub>, ''r''<sub>''N''β1</sub>) = ''r''<sub>''N''β1</sub>}}.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Euclidean algorithm
(section)
Add topic