Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Entropy (information theory)
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Definition== Named after [[H-theorem|Boltzmann's Ξ-theorem]], Shannon defined the entropy {{math|Η}} (Greek capital letter [[eta]]) of a [[discrete random variable]] <math display="inline">X</math>, which takes values in the set <math>\mathcal{X}</math> and is distributed according to <math>p: \mathcal{X} \to [0, 1]</math> such that <math>p(x) := \mathbb{P}[X = x]</math>: <math display="block">\Eta(X) = \mathbb{E}[\operatorname{I}(X)] = \mathbb{E}[-\log p(X)].</math> Here <math>\mathbb{E}</math> is the [[expected value|expected value operator]], and {{math|I}} is the [[information content]] of {{math|''X''}}.<ref>{{cite book|author=Borda, Monica|title=Fundamentals in Information Theory and Coding|publisher=Springer|year=2011|isbn=978-3-642-20346-6|url=https://books.google.com/books?id=Lyte2yl1SPAC&pg=PA11}}</ref>{{rp|p=11}}<ref>{{cite book|author1=Han, Te Sun |author2=Kobayashi, Kingo |title=Mathematics of Information and Coding|publisher=American Mathematical Society|year=2002|isbn=978-0-8218-4256-0|url=https://books.google.com/books?id=VpRESN24Zj0C&pg=PA19}}</ref>{{rp|pp=19β20}} <math>\operatorname{I}(X)</math> is itself a random variable. The entropy can explicitly be written as: <math display="block">\Eta(X) = -\sum_{x \in \mathcal{X}} p(x)\log_b p(x) ,</math> where {{math|''b''}} is the [[base of a logarithm|base of the logarithm]] used. Common values of {{math|''b''}} are 2, [[e (mathematical constant)|Euler's number {{math|''e''}}]], and 10, and the corresponding units of entropy are the [[bit]]s for {{math|''b'' {{=}} 2}}, [[Nat (unit)|nats]] for {{math|''b'' {{=}} ''e''}}, and [[ban (unit)|ban]]s for {{math|''b'' {{=}} 10}}.<ref>Schneider, T.D, [http://alum.mit.edu/www/toms/paper/primer/primer.pdf Information theory primer with an appendix on logarithms]{{Dead link|date=August 2023 |bot=InternetArchiveBot |fix-attempted=yes }}, National Cancer Institute, 14 April 2007.</ref> In the case of <math>p(x) = 0</math> for some <math>x \in \mathcal{X}</math>, the value of the corresponding summand {{math|0 log<sub>''b''</sub>(0)}} is taken to be {{math|0}}, which is consistent with the [[limit of a function|limit]]:<ref name="cover1991">{{cite book |author1=Thomas M. Cover |title=Elements of Information Theory |author2=Joy A. Thomas |date=1991 |publisher=Wiley |isbn=978-0-471-24195-9 |location=Hoboken, New Jersey}}</ref>{{rp|p=13}} <math display="block">\lim_{p \to 0^+} p \log (p) = 0.</math> One may also define the [[conditional entropy]] of two variables <math>X</math> and <math>Y</math> taking values from sets <math>\mathcal{X}</math> and <math>\mathcal{Y}</math> respectively, as:<ref name=cover1991/>{{rp|p=16}} <math display="block"> \Eta(X|Y)=-\sum_{x,y \in \mathcal{X} \times \mathcal{Y}} p_{X,Y}(x,y)\log\frac{p_{X,Y}(x,y)}{p_Y(y)} ,</math> where <math>p_{X,Y}(x,y) := \mathbb{P}[X=x,Y=y]</math> and <math>p_Y(y) = \mathbb{P}[Y = y]</math>. This quantity should be understood as the remaining randomness in the random variable <math>X</math> given the random variable <math>Y</math>. === Measure theory === Entropy can be formally defined in the language of [[measure theory]] as follows:<ref>{{nlab|id=entropy|title=Entropy}}</ref> Let <math>(X, \Sigma, \mu)</math> be a [[probability space]]. Let <math>A \in \Sigma</math> be an [[event (probability theory)|event]]. The [[surprisal]] of <math>A</math> is <math display="block"> \sigma_\mu(A) = -\ln \mu(A) .</math> The ''expected'' surprisal of <math>A</math> is <math display="block"> h_\mu(A) = \mu(A) \sigma_\mu(A) .</math> A <math>\mu</math>-almost [[partition of a set|partition]] is a [[set family]] <math>P \subseteq \mathcal{P}(X)</math> such that <math>\mu(\mathop{\cup} P) = 1</math> and <math>\mu(A \cap B) = 0</math> for all distinct <math>A, B \in P</math>. (This is a relaxation of the usual conditions for a partition.) The entropy of <math>P</math> is <math display="block"> \Eta_\mu(P) = \sum_{A \in P} h_\mu(A) .</math> Let <math>M</math> be a [[sigma-algebra]] on <math>X</math>. The entropy of <math>M</math> is <math display="block"> \Eta_\mu(M) = \sup_{P \subseteq M} \Eta_\mu(P) .</math> Finally, the entropy of the probability space is <math>\Eta_\mu(\Sigma)</math>, that is, the entropy with respect to <math>\mu</math> of the sigma-algebra of ''all'' measurable subsets of <math>X</math>. Recent studies on layered dynamical systems have introduced the concept of symbolic conditional entropy, further extending classical entropy measures to more abstract informational structures.<ref>{{cite web |last=Alpay |first=F. |year=2025 |title=Symbolic Conditional Entropy in Layered Dynamical Systems |publisher=Zenodo |url=https://doi.org/10.5281/zenodo.15354902 |doi=10.5281/zenodo.15354902 |access-date=7 May 2025}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Entropy (information theory)
(section)
Add topic