Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Dirichlet convolution
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Properties and examples== In these formulas, we use the following [[arithmetical function]]s: * <math>\varepsilon</math> is the multiplicative identity: <math>\varepsilon(1) = 1</math>, otherwise 0 (<math>\varepsilon(n)=\lfloor \tfrac1n \rfloor</math>). * <math>1</math> is the constant function with value 1: <math>1(n) = 1</math> for all <math>n</math>. Keep in mind that <math>1</math> is not the identity. (Some authors [[Incidence algebra#Special_elements|denote this]] as <math>\zeta</math> because the associated Dirichlet series is the [[Riemann zeta function]].) * <math>1_C</math> for <math>C \subset \mathbb{N}</math> is a set [[indicator function]]: <math>1_C(n) = 1</math> iff <math>n \in C</math>, otherwise 0. *<math>\text{Id}</math> is the identity function with value ''n'': <math>\text{Id}(n) = n</math>. *<math>\text{Id}_k</math> is the ''k''th power function: <math>\text{Id}_k(n)=n^k</math>. The following relations hold: * <math>1 * \mu = \varepsilon</math>, the Dirichlet inverse of the constant function <math>1</math> is the [[Möbius function]] (see [[Möbius_function#Proof_of_the_formula_for_the_sum_of_μ_over_divisors|proof]]). Hence: *<math>g = f * 1</math> if and only if <math>f = g * \mu</math>, the [[Möbius inversion formula]]. *<math>\sigma_k = \text{Id}_k * 1</math>, the [[divisor function|kth-power-of-divisors sum function]] ''σ''<sub>''k''</sub>. *<math>\sigma = \text{Id} * 1</math>, the sum-of-divisors function {{nowrap|1=''σ'' = ''σ''<sub>1</sub>}}. *<math>\tau = 1 * 1</math> , the number-of-divisors function {{nowrap|1=''τ''(''n'') = ''σ''<sub>0</sub>}}. *<math>\text{Id}_k = \sigma_k * \mu</math>, by Möbius inversion of the formulas for ''σ''<sub>''k''</sub>, ''σ'', and ''τ''. *<math>\text{Id} = \sigma * \mu</math> *<math>1 = \tau * \mu</math> *<math>\phi * 1 = \text{Id}</math> , proved under [[Euler's totient function#Divisor sum|Euler's totient function]]. *<math>\phi = \text{Id} * \mu</math> , by Möbius inversion. *<math>\sigma = \phi * \tau</math> , from convolving 1 on both sides of <math>\phi * 1 = \text{Id}</math>. *<math>\lambda * |\mu| = \varepsilon</math> where ''λ'' is [[Liouville's function]]. *<math>\text{Id} * \phi = P </math>, where <math> P </math> is [[Pillai's arithmetical function]], also known as the gcd-sum function. *<math>\lambda * 1 = 1_{\text{Sq}}</math> where Sq = {1, 4, 9, ...} is the set of squares. *<math>\text{Id}_k * (\text{Id}_k \mu) = \varepsilon </math> *<math>\tau^3 * 1 = (\tau * 1)^2</math> *<math>J_k * 1 = \text{Id}_k</math>, [[Jordan's totient function]]. *<math>(\text{Id}_s J_r) * J_s = J_{s + r} </math> *<math>\Lambda * 1 = \log</math>, where <math>\Lambda</math> is [[von Mangoldt function|von Mangoldt's function]]. *<math>|\mu| \ast 1 = 2^{\omega},</math> where <math>\omega(n)</math> is the [[prime omega function]] counting ''distinct'' prime factors of ''n''. *<math>\Omega \ast \mu = 1_{\mathcal{P}}</math>, the characteristic function of the prime powers. *<math>\omega \ast \mu = 1_{\mathbb{P}}</math> where <math>1_{\mathbb{P}}(n) \mapsto \{0,1\}</math> is the characteristic function of the primes. This last identity shows that the [[prime-counting function]] is given by the summatory function :<math>\pi(x) = \sum_{n \leq x} (\omega \ast \mu)(n) = \sum_{d=1}^{x} \omega(d) M\left(\left\lfloor \frac{x}{d} \right\rfloor\right)</math> where <math>M(x)</math> is the [[Mertens function]] and <math>\omega</math> is the distinct prime factor counting function from above. This expansion follows from the identity for the sums over Dirichlet convolutions given on the [[divisor sum identities]] page (a standard trick for these sums).<ref>{{cite book|title=Apostol's Introduction to Analytic Number Theory|last1=Schmidt |first1=Maxie}} This identity is a little special something I call "croutons". It follows from several chapters worth of exercises in Apostol's classic book.</ref> <!-- * ''μ'' ∗ 1 = ''ε'' ∗ (''μ'' ∗ Id<sub>''k''</sub>) ∗ Id<sub>''k''</sub> = ''ε'' (generalized Möbius inversion) -->
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Dirichlet convolution
(section)
Add topic