Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Dirichlet character
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Elementary facts == 4) Since <math>\gcd(1,m)=1,</math> property 2) says <math>\chi(1)\ne 0</math> so it can be canceled from both sides of <math>\chi(1)\chi(1)=\chi(1\times 1) =\chi(1)</math>: :<math>\chi(1)=1.</math><ref>These properties are derived in all introductions to the subject, e.g. Davenport p. 27, Landau p. 109.</ref> 5) Property 3) is equivalent to :if <math>a \equiv b \pmod{m}</math> then <math>\chi(a) =\chi(b).</math> 6) Property 1) implies that, for any positive integer <math>n</math> :<math>\chi(a^n)=\chi(a)^n.</math> 7) [[Euler's theorem]] states that if <math>(a,m)=1</math> then <math>a^{\phi(m)}\equiv 1 \pmod{m}.</math> Therefore, :<math>\chi(a)^{\phi(m)}=\chi(a^{\phi(m)})=\chi(1)=1.</math> That is, the nonzero values of <math>\chi(a)</math> are <math>\phi(m)</math>-th [[root of unity|roots of unity]]: :<math> \chi(a)= \begin{cases} 0 &\text{if } \gcd(a,m)>1\\ \zeta_{\phi(m)}^r&\text{if } \gcd(a,m)=1 \end{cases}</math> for some integer <math>r</math> which depends on <math>\chi, \zeta,</math> and <math>a</math>. This implies there are only a finite number of characters for a given modulus. 8) If <math>\chi</math> and <math>\chi'</math> are two characters for the same modulus so is their product <math>\chi\chi',</math> defined by pointwise multiplication: :<math>\chi\chi'(a) = \chi(a)\chi'(a)</math> (<math>\chi\chi'</math> obviously satisfies 1-3).<ref>In general, the product of a character mod <math>m</math> and a character mod <math>n</math> is a character mod <math>\operatorname{lcm}(m,n)</math></ref> The principal character is an identity: :<math> \chi\chi_0(a)=\chi(a)\chi_0(a)= \begin{cases} 0 \times 0 &=\chi(a)&\text{if } \gcd(a,m)>1\\ \chi(a)\times 1&=\chi(a) &\text{if } \gcd(a,m)=1. \end{cases}</math> 9) Let <math>a^{-1}</math> denote the inverse of <math>a</math> in <math>(\mathbb{Z}/m\mathbb{Z})^\times</math>. Then :<math>\chi(a)\chi(a^{-1})=\chi(aa^{-1})=\chi(1)=1, </math> so <math>\chi(a^{-1})=\chi(a)^{-1},</math> which extends 6) to all integers. The [[complex conjugate]] of a root of unity is also its inverse (see [[root of unity#Elementary properties|here]] for details), so for <math>(a,m)=1</math> :<math>\overline{\chi}(a)=\chi(a)^{-1}=\chi(a^{-1}). </math> (<math>\overline\chi</math> also obviously satisfies 1-3). Thus for all integers <math>a</math> :<math> \chi(a)\overline{\chi}(a)= \begin{cases} 0 &\text{if } \gcd(a,m)>1\\ 1 &\text{if } \gcd(a,m)=1 \end{cases}; </math> in other words <math>\chi\overline{\chi}=\chi_0</math>. 10) The multiplication and identity defined in 8) and the inversion defined in 9) turn the set of Dirichlet characters for a given modulus into a [[abelian group#Finite abelian groups|finite abelian group]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Dirichlet character
(section)
Add topic