Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Cooperative binding
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== The Hill equation === The first description of cooperative binding to a multi-site protein was developed by [[A V Hill|A.V. Hill]].<ref name=Hill1910>{{cite journal | vauthors = Hill AV | date = 1910 | title = The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves | journal = J Physiol | volume = 40 | pages = ivβvii }}</ref> Drawing on observations of oxygen binding to hemoglobin and the idea that cooperativity arose from the aggregation of hemoglobin molecules, each one binding one oxygen molecule, Hill suggested a phenomenological equation that has since been [[Hill equation (biochemistry)|named after him]]: [[File:Hill Plot.png|thumb|right|Hill plot of the Hill equation in red, showing the slope of the curve being the Hill coefficient and the intercept with the x-axis providing the apparent dissociation constant. The green line shows the non-cooperative curve.]] :<math> \bar{Y} = \frac{K\cdot{}[X]^n}{1+ K\cdot{}[X]^n} = \frac{[X]^n}{K^* + [X]^n} = \frac{[X]^n}{K_d^n + [X]^n} </math> where <math>n</math> is the "Hill coefficient", <math>[X]</math> denotes ligand concentration, <math>K</math> denotes an apparent association constant (used in the original form of the equation), <math>K^*</math> is an empirical dissociation constant, and <math>K_d</math> a microscopic dissociation constant (used in modern forms of the equation, and equivalent to an <math>\mathrm{EC}_{50}</math>). If <math>n<1</math>, the system exhibits negative cooperativity, whereas cooperativity is positive if <math>n>1</math>. The total number of ligand binding sites is an upper bound for <math>n</math>. The Hill equation can be linearized as: :<math> \log \frac{\bar{Y}}{1-\bar{Y}} = n\cdot{}\log [X] - n\cdot{}\log K_d </math> The "Hill plot" is obtained by plotting <math>\log \frac{\bar{Y}}{1-\bar{Y}}</math> versus <math>\log [X]</math>. In the case of the Hill equation, it is a line with slope <math>n_H</math> and intercept <math>n\cdot\log(K_d)</math>. This means that cooperativity is assumed to be fixed, i.e. it does not change with saturation. It also means that binding sites always exhibit the same affinity, and cooperativity does not arise from an affinity increasing with ligand concentration.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Cooperative binding
(section)
Add topic