Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Convolution theorem
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Functions of a discrete variable (sequences) == By a derivation similar to Eq.1, there is an analogous theorem for sequences, such as samples of two continuous functions, where now <math>\mathcal{F}</math> denotes the '''[[discrete-time Fourier transform]]''' (DTFT) operator. Consider two sequences <math>u[n]</math> and <math>v[n]</math> with transforms <math>U</math> and <math>V</math>: :<math>\begin{align} U(f) &\triangleq \mathcal{F}\{u\}(f) = \sum_{n=-\infty}^{\infty} u[n]\cdot e^{-i 2\pi f n}\;, \quad f \in \mathbb{R}, \\ V(f) &\triangleq \mathcal{F}\{v\}(f) = \sum_{n=-\infty}^{\infty} v[n]\cdot e^{-i 2\pi f n}\;, \quad f \in \mathbb{R}. \end{align}</math> The {{slink|Convolution#Discrete convolution|nopage=y}} of <math>u</math> and <math>v</math> is defined by''':''' :<math>r[n] \triangleq (u * v)[n] = \sum_{m=-\infty}^\infty u[m]\cdot v[n - m] = \sum_{m=-\infty}^\infty u[n-m]\cdot v[m].</math> The [[Convolution#Discrete convolution|'''convolution theorem''']] for discrete sequences is''':'''<ref name=Proakis/><ref name=Oppenheim/>{{rp|p.60 (2.169)}} {{Equation box 1 |indent=|cellpadding=0|border=0|background colour=white |equation={{NumBlk|:| <math>R(f) = \mathcal{F}\{u * v\}(f) =\ U(f) V(f).</math> |{{EquationRef|Eq.3}} }} }} === Periodic convolution === <math>U(f)</math> and <math>V(f),</math> as defined above, are periodic, with a period of 1. Consider <math>N</math>-periodic sequences <math>u_{_N}</math> and <math>v_{_N}</math>''':''' :<math>u_{_N}[n]\ \triangleq \sum_{m=-\infty}^{\infty} u[n-mN]</math> and <math>v_{_N}[n]\ \triangleq \sum_{m=-\infty}^{\infty} v[n-mN], \quad n \in \mathbb{Z}.</math> These functions occur as the result of sampling <math>U</math> and <math>V</math> at intervals of <math>1/N</math> and performing an inverse '''[[discrete Fourier transform]]''' (DFT) on <math>N</math> samples (see {{slink|Discrete-time_Fourier_transform#Sampling_the_DTFT|nopage=y}}). The discrete convolution''':''' :<math>\{u_{_N} * v\}[n]\ \triangleq \sum_{m=-\infty}^{\infty} u_{_N}[m]\cdot v[n-m] \equiv \sum_{m=0}^{N-1} u_{_N}[m]\cdot v_{_N}[n-m]</math> is also <math>N</math>-periodic, and is called a '''[[periodic convolution]]'''. Redefining the <math>\mathcal{F}</math> operator as the <math>N</math>-length DFT, the corresponding theorem is:<ref name="Rabiner" /><ref name="Oppenheim" />{{rp|p. 548}} {{Equation box 1 |indent=|cellpadding=0|border=0|background colour=white |equation={{NumBlk|:| <math>\mathcal{F}\{u_{_N} * v\}[k] =\ \underbrace{\mathcal{F}\{u_{_N}\}[k]}_{U(k/N)} \cdot \underbrace{\mathcal{F}\{v_{_N}\}[k]}_{V(k/N)}, \quad k \in \mathbb{Z}.</math> |{{EquationRef|Eq.4a}} }} }} And therefore''':''' {{Equation box 1 |indent=|cellpadding=0|border=0|background colour=white |equation={{NumBlk|:| <math>\{u_{_N} * v\}[n] =\ \mathcal{F}^{-1}\{\mathcal{F}\{u_{_N}\} \cdot \mathcal{F}\{v_{_N}\}\}.</math> |{{EquationRef|Eq.4b}} }} }} Under the right conditions, it is possible for this <math>N</math>-length sequence to contain a distortion-free segment of a <math>u*v</math> convolution. But when the non-zero portion of the <math>u(n)</math> or <math>v(n)</math> sequence is equal or longer than <math>N,</math> some distortion is inevitable. Such is the case when the <math>V(k/N)</math> sequence is obtained by directly sampling the DTFT of the infinitely long {{slink|Hilbert transform|Discrete Hilbert transform|nopage=y}} [[impulse response]].{{efn-ua |1=An example is the [[MATLAB]] function, '''[http://www.mathworks.com/help/toolbox/signal/ref/hilbert.html;jsessionid=67ed4e69e9729363548abed31054 hilbert(u,N)]'''.}} For <math>u</math> and <math>v</math> sequences whose non-zero duration is less than or equal to <math>N,</math> a final simplification is: {{Equation box 1 |title='''[[Circular convolution]]''' |indent=|cellpadding=6 |border= |border colour=#0073CF |background colour=#F5FFFA |equation={{NumBlk|:| <math>\{u_{_N} * v\}[n] =\ \mathcal{F}^{-1}\{\mathcal{F}\{u\} \cdot \mathcal{F}\{v\}\}.</math> |{{EquationRef|Eq.4c}} }} }} This form is often used to efficiently implement numerical convolution by [[computer]]. (see {{slink|Convolution|Fast convolution algorithms|nopage=y}} and {{slink|Circular_convolution|Example|nopage=y}}) As a partial reciprocal, it has been shown <ref>{{cite book |last1=Amiot |first1=Emmanuel |title=Music through Fourier Space |series=Computational Music Science |date=2016 |publisher=Springer |location=Zürich |isbn=978-3-319-45581-5 |page=8 |doi=10.1007/978-3-319-45581-5 |s2cid=6224021 |url=https://link.springer.com/book/10.1007/978-3-319-45581-5 |ref=Theorem 1.11}}</ref> that any linear transform that turns convolution into a product is the DFT (up to a permutation of coefficients). {{Collapse top|title=Derivations of Eq.4}} A time-domain derivation proceeds as follows''':''' :<math> \begin{align} \scriptstyle{\rm DFT}\displaystyle \{u_{_N} * v\}[k] &\triangleq \sum_{n=0}^{N-1} \left(\sum_{m=0}^{N-1} u_{_N}[m]\cdot v_{_N}[n-m]\right) e^{-i 2\pi kn/N}\\ &= \sum_{m=0}^{N-1} u_{_N}[m] \left(\sum_{n=0}^{N-1} v_{_N}[n-m]\cdot e^{-i 2\pi kn/N}\right)\\ &= \sum_{m=0}^{N-1} u_{_N}[m]\cdot e^{-i 2\pi km/N} \underbrace{ \left(\sum_{n=0}^{N-1} v_{_N}[n-m]\cdot e^{-i 2\pi k(n-m)/N}\right)}_{\scriptstyle{\rm DFT}\displaystyle\{v_{_N}\}[k]\quad \scriptstyle \text{due to periodicity}}\\ &= \underbrace{ \left(\sum_{m=0}^{N-1} u_{_N}[m]\cdot e^{-i 2\pi km/N}\right)}_{\scriptstyle{\rm DFT}\displaystyle\{u_{_N}\}[k]} \left(\scriptstyle{\rm DFT}\displaystyle\{v_{_N}\}[k]\right). \end{align} </math> A frequency-domain derivation follows from {{slink|DTFT|Periodic data|nopage=y}}, which indicates that the DTFTs can be written as''':''' :<math> \mathcal{F}\{u_{_N} * v\}(f) = \frac{1}{N} \sum_{k=-\infty}^{\infty} \left(\scriptstyle{\rm DFT}\displaystyle \{u_{_N} * v\}[k]\right)\cdot \delta\left(f-k/N\right). \quad \scriptstyle \mathsf{(Eq.5a)} </math> :<math> \mathcal{F}\{u_{_N}\}(f) = \frac{1}{N} \sum_{k=-\infty}^{\infty} \left(\scriptstyle{\rm DFT}\displaystyle\{u_{_N}\}[k]\right)\cdot \delta\left(f-k/N\right). </math> The product with <math>V(f)</math> is thereby reduced to a discrete-frequency function''':''' :<math> \begin{align} \mathcal{F}\{u_{_N} * v\}(f) &= G_{_N}(f) V(f) \\ &= \frac{1}{N} \sum_{k=-\infty}^{\infty} \left(\scriptstyle{\rm DFT}\displaystyle\{u_{_N}\}[k]\right)\cdot V(f)\cdot \delta\left(f-k/N\right)\\ &= \frac{1}{N} \sum_{k=-\infty}^{\infty} \left(\scriptstyle{\rm DFT}\displaystyle\{u_{_N}\}[k]\right)\cdot V(k/N)\cdot \delta\left(f-k/N\right)\\ &= \frac{1}{N} \sum_{k=-\infty}^{\infty} \left(\scriptstyle{\rm DFT}\displaystyle\{u_{_N}\}[k]\right)\cdot \left(\scriptstyle{\rm DFT}\displaystyle\{v_{_N}\}[k]\right) \cdot \delta\left(f-k/N\right), \quad \scriptstyle \mathsf{(Eq.5b)} \end{align} </math> where the equivalence of <math>V(k/N)</math> and <math>\left(\scriptstyle{\rm DFT}\displaystyle\{v_{_N}\}[k]\right)</math> follows from {{slink|DTFT|Sampling the DTFT|nopage=y}}. Therefore, the equivalence of (5a) and (5b) requires: :<math>\scriptstyle{\rm DFT} \displaystyle {\{u_{_N} * v\}[k]} = \left(\scriptstyle{\rm DFT} \displaystyle\{u_{_N}\}[k]\right)\cdot \left(\scriptstyle{\rm DFT}\displaystyle\{v_{_N}\}[k]\right).</math> <br>We can also verify the inverse DTFT of (5b)''':''' :<math> \begin{align} (u_{_N} * v)[n] & = \int_{0}^{1} \left(\frac{1}{N} \sum_{k=-\infty}^{\infty} \scriptstyle{\rm DFT}\displaystyle\{u_{_N}\}[k]\cdot \scriptstyle{\rm DFT}\displaystyle\{v_{_N}\}[k]\cdot \delta\left(f-k/N\right)\right)\cdot e^{i 2 \pi f n} df \\ & = \frac{1}{N} \sum_{k=-\infty}^{\infty} \scriptstyle{\rm DFT}\displaystyle\{u_{_N}\}[k]\cdot \scriptstyle{\rm DFT}\displaystyle\{v_{_N}\}[k]\cdot \underbrace{\left(\int_{0}^{1} \delta\left(f-k/N\right)\cdot e^{i 2 \pi f n} df\right)}_{\text{0, for} \ k\ \notin\ [0,\ N)} \\ & = \frac{1}{N} \sum_{k=0}^{N-1} \bigg(\scriptstyle{\rm DFT}\displaystyle\{u_{_N}\}[k]\cdot \scriptstyle{\rm DFT}\displaystyle\{v_{_N}\}[k]\bigg)\cdot e^{i 2 \pi \frac{n}{N} k}\\ &=\ \scriptstyle{\rm DFT}^{-1} \displaystyle \bigg( \scriptstyle{\rm DFT}\displaystyle \{u_{_N}\}\cdot \scriptstyle{\rm DFT}\displaystyle \{v_{_N}\} \bigg). \end{align} </math> {{Collapse bottom}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Convolution theorem
(section)
Add topic