Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Circumference
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Ellipse == [[File:Ellipses same circumference.png|thumb|Circle, and ellipses with the same circumference]] {{Main|Ellipse#Circumference}} Some authors use circumference to denote the perimeter of an ellipse. There is no general formula for the circumference of an ellipse in terms of the [[semi-major and semi-minor axes]] of the ellipse that uses only elementary functions. However, there are approximate formulas in terms of these parameters. One such approximation, due to Euler (1773), for the [[canonical form|canonical]] ellipse, <math display=block>\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,</math> is <math display=block>C_{\rm{ellipse}} \sim \pi \sqrt{2\left(a^2 + b^2\right)}.</math> Some lower and upper bounds on the circumference of the canonical ellipse with <math>a\geq b</math> are:<ref>{{cite journal|last1=Jameson|first1=G.J.O.|title=Inequalities for the perimeter of an ellipse| journal= Mathematical Gazette|volume= 98 |issue=499|year=2014|pages=227β234|doi=10.2307/3621497|jstor=3621497|s2cid=126427943 }}</ref> <math display=block>2\pi b \leq C \leq 2\pi a,</math> <math display=block>\pi (a+b) \leq C \leq 4(a+b),</math> <math display=block>4\sqrt{a^2+b^2} \leq C \leq \pi \sqrt{2\left(a^2+b^2\right)}.</math> Here the upper bound <math>2\pi a</math> is the circumference of a [[Circumscribed circle|circumscribed]] [[concentric circle]] passing through the endpoints of the ellipse's major axis, and the lower bound <math>4\sqrt{a^2+b^2}</math> is the [[perimeter]] of an [[Inscribed figure|inscribed]] [[rhombus]] with [[Vertex (geometry)|vertices]] at the endpoints of the major and minor axes. The circumference of an ellipse can be expressed exactly in terms of the [[complete elliptic integral of the second kind]].<ref>{{citation|first1=Gert|last1=Almkvist|first2=Bruce|last2=Berndt|s2cid=119810884|title=Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, {{pi}}, and the Ladies Diary|journal=American Mathematical Monthly|year=1988|pages=585β608|volume=95|issue=7|mr=966232|doi=10.2307/2323302|jstor=2323302}}</ref> More precisely, <math display=block>C_{\rm{ellipse}} = 4a \int_0^{\pi/2} \sqrt{1 - e^2 \sin^2\theta}\ d\theta,</math> where <math>a</math> is the length of the semi-major axis and <math>e</math> is the eccentricity <math>\sqrt{1 - b^2/a^2}.</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Circumference
(section)
Add topic