Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Catalan's constant
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Series representations== Catalan's constant appears in the evaluation of several rational series including:<ref name=":0">{{Cite web |last=Weisstein |first=Eric W. |title=Catalan's Constant |url=https://mathworld.wolfram.com/CatalansConstant.html |access-date=2024-10-02 |website=mathworld.wolfram.com |language=en}}</ref><math display="block">\frac{\pi^2}{16}+\frac G2 = \sum_{n=0}^\infty \frac{1}{(4n+1)^2}.</math><math display="block">\frac{\pi^2}{16}-\frac G2 = \sum_{n=0}^\infty \frac{1}{(4n+3)^2}.</math> The following two formulas involve quickly converging series, and are thus appropriate for numerical computation: <math display="block">\begin{align} G & = 3 \sum_{n=0}^\infty \frac{1}{2^{4n}} \left(-\frac{1}{2(8n+2)^2}+\frac{1}{2^2(8n+3)^2}-\frac{1}{2^3(8n+5)^2}+\frac{1}{2^3(8n+6)^2}-\frac{1}{2^4(8n+7)^2}+\frac{1}{2(8n+1)^2}\right) \\ & \qquad -2 \sum_{n=0}^\infty \frac{1}{2^{12n}} \left(\frac{1}{2^4(8n+2)^2}+\frac{1}{2^6(8n+3)^2}-\frac{1}{2^9(8n+5)^2}-\frac{1}{2^{10} (8n+6)^2}-\frac{1}{2^{12} (8n+7)^2}+\frac{1}{2^3(8n+1)^2}\right) \end{align}</math> and <math display="block">G = \frac{\pi}{8}\log\left(2 + \sqrt{3}\right) + \frac{3}{8}\sum_{n=0}^\infty \frac{1}{(2n+1)^2 \binom{2n}{n}}.</math> The theoretical foundations for such series are given by Broadhurst, for the first formula,<ref>{{cite arXiv|first1=D. J. |last1=Broadhurst|eprint=math.CA/9803067 |title=Polylogarithmic ladders, hypergeometric series and the ten millionth digits of {{math|''ζ''(3)}} and {{math|''ζ''(5)}}| year=1998}}</ref> and Ramanujan, for the second formula.<ref>{{cite book|first=B. C.|last=Berndt|title=Ramanujan's Notebook, Part I|publisher=Springer Verlag|date=1985|page=289|isbn=978-1-4612-1088-7}}</ref> The algorithms for fast evaluation of the Catalan constant were constructed by E. Karatsuba.<ref>{{cite journal|first=E. A.| last=Karatsuba| title=Fast evaluation of transcendental functions|journal=Probl. Inf. Transm.|volume=27|issue=4| pages=339–360| date=1991|zbl=0754.65021|mr=1156939}}</ref><ref>{{cite book|first=E. A.|last=Karatsuba|contribution=Fast computation of some special integrals of mathematical physics|title=Scientific Computing, Validated Numerics, Interval Methods| url=https://archive.org/details/scientificcomput00wals_919|url-access=limited|editor1-first=W.|editor1-last=Krämer| editor2-first=J. W.|editor2-last=von Gudenberg|pages=[https://archive.org/details/scientificcomput00wals_919/page/n35 29]–41|date=2001|doi=10.1007/978-1-4757-6484-0_3|isbn=978-1-4419-3376-8 }}</ref> Using these series, calculating Catalan's constant is now about as fast as calculating [[Apéry's constant]], <math>\zeta(3)</math>.<ref name="Yee_formulas" /> Other quickly converging series, due to Guillera and Pilehrood and employed by the [[y-cruncher]] software, include:<ref name="Yee_formulas">{{cite web|url=http://www.numberworld.org/y-cruncher/internals/formulas.html|title=Formulas and Algorithms|author=Alexander Yee|date=14 May 2019|access-date=5 December 2021}}</ref> :<math>G = \frac{1}{2}\sum_{k=0}^{\infty }\frac{(-8)^{k}(3k+2)}{(2k+1)^{3}{\binom{2k}{k}}^{3}}</math> :<math>G = \frac{1}{64}\sum_{k=1}^{\infty }\frac{256^{k}(580k^2-184k+15)}{k^3(2k-1)\binom{6k}{3k}\binom{6k}{4k}\binom{4k}{2k}}</math> :<math>G = -\frac{1}{1024}\sum_{k=1}^{\infty }\frac{(-4096)^k(45136k^4-57184k^3+21240k^2-3160k+165)}{k^3(2k-1)^3}\left( \frac{(2k)!^6(3k)!^3}{k!^3(6k)!^3} \right)</math> All of these series have [[time complexity]] <math>O(n\log(n)^3)</math>.<ref name="Yee_formulas"/>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Catalan's constant
(section)
Add topic