Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Brainfuck
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Examples == === Adding two values === As a first, simple example, the following code snippet will add the current cell's value to the next cell: Each time the loop is executed, the current cell is decremented, the data pointer moves to the right, that next cell is incremented, and the data pointer moves left again. This sequence is repeated until the starting cell is 0. <syntaxhighlight lang="bf"> [->+<] </syntaxhighlight> This can be incorporated into a simple addition program as follows: <syntaxhighlight lang="bf"> ++ Cell c0 = 2 > +++++ Cell c1 = 5 [ Start your loops with your cell pointer on the loop counter (c1 in our case) < + Add 1 to c0 > - Subtract 1 from c1 ] End your loops with the cell pointer on the loop counter At this point our program has added 5 to 2 leaving 7 in c0 and 0 in c1 but we cannot output this value to the terminal since it is not ASCII encoded To display the ASCII character "7" we must add 48 to the value 7 We use a loop to compute 48 = 6 * 8 ++++ ++++ c1 = 8 and this will be our loop counter again [ < +++ +++ Add 6 to c0 > - Subtract 1 from c1 ] < . Print out c0 which has the value 55 which translates to "7"! </syntaxhighlight> === Hello World! === The following program prints [[Hello world program|"Hello World!"]] and a newline to the screen: <syntaxhighlight lang="bf"> [ This program prints "Hello World!" and a newline to the screen; its length is 106 active command characters. [It is not the shortest.] This loop is an "initial comment loop", a simple way of adding a comment to a BF program such that you don't have to worry about any command characters. Any ".", ",", "+", "-", "<" and ">" characters are simply ignored, the "[" and "]" characters just have to be balanced. This loop and the commands it contains are ignored because the current cell defaults to a value of 0; the 0 value causes this loop to be skipped. ] ++++++++ Set Cell #0 to 8 [ >++++ Add 4 to Cell #1; this will always set Cell #1 to 4 [ as the cell will be cleared by the loop >++ Add 2 to Cell #2 >+++ Add 3 to Cell #3 >+++ Add 3 to Cell #4 >+ Add 1 to Cell #5 <<<<- Decrement the loop counter in Cell #1 ] Loop until Cell #1 is zero; number of iterations is 4 >+ Add 1 to Cell #2 >+ Add 1 to Cell #3 >- Subtract 1 from Cell #4 >>+ Add 1 to Cell #6 [<] Move back to the first zero cell you find; this will be Cell #1 which was cleared by the previous loop <- Decrement the loop Counter in Cell #0 ] Loop until Cell #0 is zero; number of iterations is 8 The result of this is: Cell no : 0 1 2 3 4 5 6 Contents: 0 0 72 104 88 32 8 Pointer : ^ >>. Cell #2 has value 72 which is 'H' >---. Subtract 3 from Cell #3 to get 101 which is 'e' +++++++..+++. Likewise for 'llo' from Cell #3 >>. Cell #5 is 32 for the space <-. Subtract 1 from Cell #4 for 87 to give a 'W' <. Cell #3 was set to 'o' from the end of 'Hello' +++.------.--------. Cell #3 for 'rl' and 'd' >>+. Add 1 to Cell #5 gives us an exclamation point >++. And finally a newline from Cell #6 </syntaxhighlight> For readability, this code has been spread across many lines, and blanks and comments have been added. Brainfuck ignores all characters except the eight commands <code>+-<>[],.</code> so no special syntax for comments is needed (as long as the comments do not contain the command characters). The code could just as well have been written as: <syntaxhighlight lang="bf">++++++++[>++++[>++>+++>+++>+<<<<-]>+>+>->>+[<]<-]>>.>---.+++++++..+++.>>.<-.<.+++.------.--------.>>+.>++.</syntaxhighlight> === ROT13 === This program enciphers its input with the [[ROT13]] cipher. To do this, it must map characters A-M ([[ASCII]] 65β77) to N-Z (78β90), and vice versa. Also it must map a-m (97β109) to n-z (110β122) and vice versa. It must map all other characters to themselves; it reads characters one at a time and outputs their enciphered equivalents until it reads an EOF (here assumed to be represented as either -1 or "no change"), at which point the program terminates. <syntaxhighlight lang="bf"> -,+[ Read first character and start outer character reading loop -[ Skip forward if character is 0 >>++++[>++++++++<-] Set up divisor (32) for division loop (MEMORY LAYOUT: dividend copy remainder divisor quotient zero zero) <+<-[ Set up dividend (x minus 1) and enter division loop >+>+>-[>>>] Increase copy and remainder / reduce divisor / Normal case: skip forward <[[>+<-]>>+>] Special case: move remainder back to divisor and increase quotient <<<<<- Decrement dividend ] End division loop ]>>>[-]+ End skip loop; zero former divisor and reuse space for a flag >--[-[<->+++[-]]]<[ Zero that flag unless quotient was 2 or 3; zero quotient; check flag ++++++++++++<[ If flag then set up divisor (13) for second division loop (MEMORY LAYOUT: zero copy dividend divisor remainder quotient zero zero) >-[>+>>] Reduce divisor; Normal case: increase remainder >[+[<+>-]>+>>] Special case: increase remainder / move it back to divisor / increase quotient <<<<<- Decrease dividend ] End division loop >>[<+>-] Add remainder back to divisor to get a useful 13 >[ Skip forward if quotient was 0 -[ Decrement quotient and skip forward if quotient was 1 -<<[-]>> Zero quotient and divisor if quotient was 2 ]<<[<<->>-]>> Zero divisor and subtract 13 from copy if quotient was 1 ]<<[<<+>>-] Zero divisor and add 13 to copy if quotient was 0 ] End outer skip loop (jump to here if ((character minus 1)/32) was not 2 or 3) <[-] Clear remainder from first division if second division was skipped <.[-] Output ROT13ed character from copy and clear it <-,+ Read next character ] End character reading loop </syntaxhighlight> === Simulation of abiogenesis === In 2024, a Google research project used a slightly modified 10-command version of Brainfuck as the basis of an artificial digital environment. In this environment, they found that replicators arose naturally and competed with each other for domination of the environment.<ref>{{cite arXiv | author-link = | date = 2024 | title = Computational Life: How Well-formed, Self-replicating Programs Emerge from Simple Interaction | eprint = 2406.19108 | class = cs.NE | author1 = Blaise AgΓΌera y Arcas | last2 = Alakuijala | first2 = Jyrki | last3 = Evans | first3 = James | last4 = Laurie | first4 = Ben | last5 = Mordvintsev | first5 = Alexander | last6 = Niklasson | first6 = Eyvind | last7 = Randazzo | first7 = Ettore | last8 = Versari | first8 = Luca }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Brainfuck
(section)
Add topic