Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Bilinear transform
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Transformation of a General LTI System == A general [[LTI system]] has the transfer function <math display=block> H_a(s) = \frac{b_0 + b_1s + b_2s^2 + \cdots + b_Qs^Q}{a_0 + a_1s + a_2s^2 + \cdots + a_Ps^P} </math> The order of the transfer function {{math|''N''}} is the greater of {{math|''P''}} and {{math|''Q''}} (in practice this is most likely {{math|''P''}} as the transfer function must be [[Proper transfer function|proper]] for the system to be stable). Applying the bilinear transform <math display=block> s = K\frac{z - 1}{z + 1} </math> where {{math|''K''}} is defined as either {{math|2/''T''}} or otherwise if using [[frequency warping]], gives <math display=block> H_d(z) = \frac{b_0 + b_1\left(K\frac{z - 1}{z + 1}\right) + b_2\left(K\frac{z - 1}{z + 1}\right)^2 + \cdots + b_Q\left(K\frac{z - 1}{z + 1}\right)^Q} {a_0 + a_1\left(K\frac{z - 1}{z + 1}\right) + a_2\left(K\frac{z - 1}{z + 1}\right)^2 + \cdots + b_P\left(K\frac{z - 1}{z + 1}\right)^P} </math> Multiplying the numerator and denominator by the largest power of {{math|(''z'' + 1)<sup>β1</sup>}} present, {{math|(''z'' + 1)<sup>β''N''</sup>}}, gives <math display=block> H_d(z) = \frac{b_0(z+1)^N + b_1K(z-1)(z+1)^{N-1} + b_2K^2(z-1)^2(z+1)^{N-2} + \cdots + b_QK^Q(z-1)^Q(z+1)^{N-Q}} {a_0(z+1)^N + a_1K(z-1)(z+1)^{N-1} + a_2K^2(z-1)^2(z+1)^{N-2} + \cdots + a_PK^P(z-1)^P(z+1)^{N-P}} </math> It can be seen here that after the transformation, the degree of the numerator and denominator are both {{math|''N''}}. Consider then the pole-zero form of the continuous-time transfer function <math display=block> H_a(s) = \frac{(s - \xi_1)(s - \xi_2) \cdots (s - \xi_Q)}{(s - p_1)(s - p_2) \cdots (s - p_P)} </math> The roots of the numerator and denominator polynomials, {{math|''ΞΎ<sub>i</sub>''}} and {{math|''p<sub>i</sub>''}}, are the [[zeros and poles]] of the system. The bilinear transform is a [[one-to-one mapping]], hence these can be transformed to the z-domain using <math display=block> z = \frac{K + s}{K - s} </math> yielding some of the discretized transfer function's zeros and poles {{math|''ΞΎ'<sub>i</sub>''}} and {{math|''p'<sub>i</sub>''}} <math display=block> \begin{aligned} \xi'_i &= \frac{K + \xi_i}{K - \xi_i} \quad 1 \leq i \leq Q \\ p'_i &= \frac{K + p_i}{K - p_i} \quad 1 \leq i \leq P \end{aligned} </math> As described above, the degree of the numerator and denominator are now both {{math|''N''}}, in other words there is now an equal number of zeros and poles. The multiplication by {{math|(''z'' + 1)<sup>β''N''</sup>}} means the additional zeros or poles are <ref> {{cite web|url=http://www.ee.ic.ac.uk/hp/staff/dmb/courses/DSPDF/00800_TransIIR.pdf |last=Bhandari |first=Ayush |title=DSP and Digital Filters Lecture Notes |access-date=16 August 2022 |archive-url=https://web.archive.org/web/20220303144755/http://www.ee.ic.ac.uk/hp/staff/dmb/courses/DSPDF/00800_TransIIR.pdf |archive-date=3 March 2022}} </ref> <math display=block> \begin{aligned} \xi'_i &= -1 \quad Q < i \leq N \\ p'_i &= -1 \quad P < i \leq N \end{aligned} </math> Given the full set of zeros and poles, the z-domain transfer function is then <math display=block> H_d(z) = \frac{(z - \xi'_1)(z - \xi'_2) \cdots (z - \xi'_N)} {(z - p'_1)(z - p'_2) \cdots (z - p'_N)} </math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Bilinear transform
(section)
Add topic