Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Axiom of regularity
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===No infinite descending sequence of sets exists=== Suppose, to the contrary, that there is a [[function (mathematics)|function]], ''f'', on the [[natural number]]s with ''f''(''n''+1) an element of ''f''(''n'') for each ''n''. Define ''S'' = {''f''(''n''): ''n'' a natural number}, the range of ''f'', which can be seen to be a set from the [[axiom schema of replacement]]. Applying the axiom of regularity to ''S'', let ''B'' be an element of ''S'' which is disjoint from ''S''. By the definition of ''S'', ''B'' must be ''f''(''k'') for some natural number ''k''. However, we are given that ''f''(''k'') contains ''f''(''k''+1) which is also an element of ''S''. So ''f''(''k''+1) is in the [[Intersection (set theory)|intersection]] of ''f''(''k'') and ''S''. This contradicts the fact that they are disjoint sets. Since our supposition led to a contradiction, there must not be any such function, ''f''. The nonexistence of a set containing itself can be seen as a special case where the sequence is infinite and constant. Notice that this argument only applies to functions ''f'' that can be represented as sets as opposed to undefinable classes. The [[hereditarily finite set]]s, ''V''<sub>Ο</sub>, satisfy the axiom of regularity (and all other axioms of [[ZFC]] except the [[axiom of infinity]]). So if one forms a non-trivial [[ultraproduct|ultrapower]] of V<sub>Ο</sub>, then it will also satisfy the axiom of regularity. The resulting [[model (logic)|model]] <!--WHAT model?--> will contain elements, called non-standard natural numbers, that satisfy the definition of natural numbers in that model but are not really natural numbers.{{dubious|date=February 2023|reason=They satisfy the first-order Peano axioms, so it seems dubious to claim that they are not actually natural numbers. They presumably do not satisfy the second-order Peano axioms with respect to the subset relation of the "ambient" set theory inside of which the model is constructed. But don't they actually satisfy the second-order Peano axioms with respect to the internal subset relation of the model?}} They are "fake" natural numbers which are "larger" than any actual natural number. This model will contain infinite descending sequences of elements.{{clarification needed|date=February 2023|reason=Is the set membership relation in this infinite descending chain the "internal" set membership relation of the model? (I.e. the model's interpretation of the set membership relation?) Or is what follows referring to the set membership relation of the "ambient" set theory in which the model is constructed? Presumably it can't be the latter, because the fact that the latter has a von Neumann cumulative hierarchy, e.g. V_omega, seems to presuppose that it satisfies regularity, and thus otherwise this section would be describing a contradiction. If so, then this section ideally would clarify that what follows refers to the model's interpretation of the set membership relation, and that this is necessarily distinct from (in particular not the restriction of) the ambient set theory's set membership relation.}} For example, suppose ''n'' is a non-standard natural number, then <math display="inline">(n-1) \in n</math> and <math display="inline">(n-2) \in (n-1)</math>, and so on. For any actual natural number ''k'', <math display="inline">(n-k-1) \in (n-k)</math>. This is an unending descending sequence of elements. But this sequence is not definable in the model and thus not a set. So no contradiction to regularity can be proved.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Axiom of regularity
(section)
Add topic